全等三角形辅助线系列之三---截长补短类辅助线作法大全(共11页).docx
《全等三角形辅助线系列之三---截长补短类辅助线作法大全(共11页).docx》由会员分享,可在线阅读,更多相关《全等三角形辅助线系列之三---截长补短类辅助线作法大全(共11页).docx(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上全等三角形辅助线系列之三与截长补短有关的辅助线作法大全一、截长补短法构造全等三角形截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段等于已知的两条较短线段中的一条,然后证明其中的另一段与已知的另一条线段相等;所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段的关系有的是采取截长补短后,使之构成某种特定的三角形进行求解截长补短法作辅助线,适合于证明线段的和、差、倍、分等类的题目典型例题精讲【例1】 如图,在中,是
2、的平分线,且,求的度数【解析】法一:如图所示,延长至使,连接、由知,而,则为等边三角形注意到,故.从而有,故.所以,.法二:在上取点,使得,则由题意可知.在和中,则,从而,进而有,.注意到,则:,故.【答案】见解析【例2】 已知中,、分别平分和,、交于点,试判断、的数量关系,并加以证明【解析】,理由是:在上截取,连结,利用证得,利用证得,【答案】见解析【例3】 如图,已知在ABC内,P、Q分别在BC、CA上,并且AP、BQ分别是BAC、ABC的角平分线,求证:【解析】延长AB至D,使,连DP在等腰BPD中,可得,从而,ADPACP(ASA),故又,故 ,从而【答案】见解析【例4】 如图,在四边
3、形ABCD中,BD平分ABC,求证:【解析】延长BA至F,使,连FDBDFBDC(SAS),故,又,故在等腰BFD中,故有【答案】见解析【例5】 点,在等边三角形的边上运动,求证:【解析】延长至,使得 是等腰三角形,且, 是等边三角形 在和中, ., .又 , .在与中, 【答案】见解析【例6】 如图在ABC中,P为AD上任意一点,求证:【解析】延长AC至F,使,连PDABPAFP(SAS)故由三角形性质知【答案】见解析【例7】 如图,四边形ABCD中,ABDC,BE、CE分别平分ABC、BCD,且点E在AD上求证:【解析】在BC上截取,连接EFBE平分ABC,又,ABEFBE(SAS),AB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 辅助线 系列 截长补短 作法 大全 11
限制150内