人教版高一数学必修四课件平面向量的正交分解及坐标表示.ppt
《人教版高一数学必修四课件平面向量的正交分解及坐标表示.ppt》由会员分享,可在线阅读,更多相关《人教版高一数学必修四课件平面向量的正交分解及坐标表示.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.3 2.3 平面向量的基本定理及坐标表示平面向量的基本定理及坐标表示 平面向量基本定理平面向量基本定理2.3.2 2.3.2 平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示问题提出问题提出 1.1.向量加法与减法有哪几种几何运算向量加法与减法有哪几种几何运算法则?法则?2.2.怎样理解向量的数乘运算怎样理解向量的数乘运算a?(1 1)|a a|=|=|a a|;(2 2)0 0时,时,a与与a方向相同;方向相同;0 0时,时,a与与a方向相反;方向相反;=0=0时,时,a=0.=0.3.3.平面向量共线定理是什么?平面向量共线定理是什么?4.4.如图,光滑斜面上一个木块受到的重如
2、图,光滑斜面上一个木块受到的重力为力为G G,下滑力为,下滑力为F F1 1,木块对斜面的压,木块对斜面的压力为力为F F2 2,这三个力的方向分别如何?,这三个力的方向分别如何?三者有何相互关系?三者有何相互关系?G GF F1 1F F2 2非零向量非零向量a与向量与向量b共线共线 存在唯存在唯一实数一实数,使,使ba.5.5.在物理中,力是一个向量,力的合成在物理中,力是一个向量,力的合成就是向量的加法运算就是向量的加法运算.力也可以分解,力也可以分解,任何一个大小不为零的力,都可以分解任何一个大小不为零的力,都可以分解成两个不同方向的分力之和成两个不同方向的分力之和.将这种力将这种力的
3、分解拓展到向量中来,就会形成一个的分解拓展到向量中来,就会形成一个新的数学理论新的数学理论.探究(一):探究(一):平面向量基本定理平面向量基本定理 思考思考1 1:给定平面内任意两个向量给定平面内任意两个向量e1 1,e2 2,如何求作向量,如何求作向量3 3e1 12 2e2 2和和e1 12 2e2 2?e1 1e2 22 2e2 2B BC CO O3 3e1 1A Ae1 1D D3 3e1 12 2e2 2e1 1-2-2e2 2思考思考2 2:如图,设如图,设OAOA,OBOB,OCOC为三条共为三条共点射线,点射线,P P为为OCOC上一点,能否在上一点,能否在OAOA、OBO
4、B上分别找一点上分别找一点M M、N N,使四边形,使四边形OMPNOMPN为平为平行四边形?行四边形?M MN NO OA AB BC CP P思考思考3 3:在下列两图中,向量在下列两图中,向量不共线,能否在直线不共线,能否在直线OAOA、OBOB上分别找一上分别找一点点M M、N N,使,使?O OA AB BC CM MN NO OA AB BC CM MN N思考思考4 4:在上图中,设在上图中,设 =e1 1,=e2 2,=a,则向量,则向量 分别与分别与e1 1,e2 2的的关系如何?从而向量关系如何?从而向量a与与e1 1,e2 2的关系如的关系如何?何?O OA AB BC
5、CM MN NO OA AB BC CM MN N思考思考5 5:若上述向量若上述向量e1 1,e2 2,a都为定向量,都为定向量,且且e1 1,e2 2不共线,则实数不共线,则实数1 1,2 2是否存在是否存在?是否唯一?是否唯一?O OA AB BC CM MN NO OA AB BC CM MN N思考思考6 6:若向量若向量a与与e1 1或或e2 2共线,共线,a还能用还能用1 1e1 12 2e2 2表示吗?表示吗?e1 1aa=1 1e1 1+0+0e2 2e2 2aa=0 0e1 1+2 2e2 2思考思考7 7:根据上述分析,平面内任一向根据上述分析,平面内任一向量量a都可以由
6、这个平面内两个不共线的都可以由这个平面内两个不共线的向量向量e1 1,e2 2表示出来,从而可形成一个表示出来,从而可形成一个定理定理.你能完整地描述这个定理的内容你能完整地描述这个定理的内容吗?吗?若若e1 1、e2 2是同一平面内的两个不共线向量,是同一平面内的两个不共线向量,则对于这一平面内的任意向量则对于这一平面内的任意向量a,有且只有,有且只有一对实数一对实数1 1,2 2,使,使a1e12e2.思考思考8 8:上述定理称为上述定理称为平面向量基本定理平面向量基本定理,不共线向量不共线向量e1,e2叫做表示这一平面内所叫做表示这一平面内所有向量的一组有向量的一组基底基底.那么同一平面
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版高一 数学 必修 课件 平面 向量 正交 分解 坐标 表示
限制150内