回顾与思考证明三小结.ppt
《回顾与思考证明三小结.ppt》由会员分享,可在线阅读,更多相关《回顾与思考证明三小结.ppt(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、回顾与思考(1)证明(三)小结八年级数学(下)第八章 证明(三)挑战“记忆”w说说平行四边形,矩形,菱形,正方形之间的关系.w“等腰梯形在同一底上的两个角相等”与“等腰三角形的两个底角”角的证明过程有什么联系?w依次连接一个四边形四条边的中点所构成的四边形是特殊四边形吗?你能证明你的结论吗?回顾 思考“公理”知多少w本套教材选用如下命题作为公理:w1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;w2.两条平行线被第三条直线所截,同位角相等;w3.两边夹角对应相等的两个三角形全等;w4.两角及其夹边对应相等的两个三角形全等;w5.三边对应相等的两个三角形全等;w6.全等三角形的对
2、应边相等,对应角相等.回顾 思考学好几何标志是会“证明”w证明命题的一般步骤:w(1)理解题意:分清命题的条件(已知),结论(求证);w(2)根据题意,画出图形;w(3)结合图形,用符号语言写出“已知”和“求证”;w(4)分析题意,探索证明思路(由“因”导“果”,执“果”索“因”.);w(5)依据思路,运用数学符号和数学语言条理清晰地写出证明过程;w(6)检查表达过程是否正确,完善.回顾 思考平行四边形的平行四边形的性质性质w定理:平行四边形的对边相等.w证明后的结论,以后可以直接运用.BDCA四边形ABCD是平行四边形.AB=CD,BC=DA.w定理:平行四边形的对角相等.四边形ABCD是平
3、行四边形.A=C,B=D.定理:平行四边形的对角线互相平分.四边形ABCD是平行四边形.CO=AO,BO=DO.BDCAO定理:夹在两条平等线间的平等线段相等.MNPQ,ABCD,AB=CD.BDCAMNPQ回顾 思考平行四边形的判定平行四边形的判定w定理:两组对边分别相等的四边形是平行四边形.w定理:一组对边平行且相等的四边形是平行四边形.定理:对角线互相平分的四边形是平行四边形.定理:两组对角分别相等的四边形是平行四边形的.回顾 思考wAB=CD,AD=BC,w四边形ABCD是平行四边形.BDCABDCAOwABCD,AB=CD,w四边形ABCD是平行四边形.wAO=CO,BO=DO,w四
4、边形ABCD是平行四边形.wA=C,B=D.w四边形ABCD是平行四边形.等腰梯形的性质w定理:等腰梯形同一底上的两个角相等.w定理:等腰梯形的两条对角线相等.w在梯形ABCD中,ADBC,wAB=DC,wAC=DB.w在梯形ABCD中,ADBC,wAB=DC,wA=D,B=C.BDCABDCAw证明后的结论,以后可以直接运用.回顾 思考等腰梯形的等腰梯形的判定判定定理:同一底上的两个角相等的梯形是等腰梯形.在梯形ABCD中,ADBC,A=D或B=C,AB=DC.定理:两条对角线相等的梯形是等腰梯形.在梯形ABCD中,ADBC,AC=DB.AB=DC.BDCABDCAw证明后的结论,以后可以直
5、接运用.回顾 思考三角形中位线的性质三角形中位线的性质w定理:三角形的中位线平行于第三边,且等于第三边的一半.w这个定理提供了证明线段平行,和线段成倍分关系的根据.模型:连接任意四边形各边中点所成的四边形是平行四边形.要重视这个模型的证明过程反映出来的规律:对角线的关系是关键.改变四边形的形状后,对角线具有的关系(对角线相等,对角线垂直,对角线相等且垂直)决定了各中点所成四边形的形状.回顾 思考wDE是ABC的中位,DEBCADEBC,ABCHDEFG四边形之间的关系四边形之间的关系w四边形之间有何关系?w特殊的平行四边形之间呢?w还记得它们与平行四边形的关系吗?w能用一张图来表示它们之间的关
6、系吗?四边形平行四边形矩形菱形正方形两组对边分别平行有一个角是直角有一组邻边相等有一个角是直角有一组邻边相等一组对边平行另一组对边不平行梯形两腰相等等腰梯形腰与底垂直直角梯形回顾 思考矩形的性质矩形的性质,推论推论w定理:矩形的四个角都是直角.w定理:矩形的两条对角线相等.推论(直角三角形性质):直角三角形斜边上的中线等于斜边的一半.回顾 思考w四边形ABCD是矩形,A=B=C=D=90。.DBCADBCAwAC,BD是矩形ABCD的两条对角线.AC=BD.在ABC中,ACB=90。,AD=BD,ABCD矩形的判定矩形的判定,直角三角形的直角三角形的判定判定w定理:有三个角是直角的四边形是矩形
7、.w定理:对角线相等的平行四边形是矩形.w定理:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.回顾 思考wA=B=C=90。,四边形ABCD是矩形.DBCADBCAwAC,BD是ABCD的两条对角线,且AC=DB.四边形ABCD是矩形.ABCD ACB=90。.在ABC中,AD=BD,菱形的性质菱形的性质w定理:菱形的四条边都相等.w定理:菱形的两条对角线互相垂直,并且每条对角线平分一组对角.回顾 思考w四边形ABCD是菱形,AB=BC=CD=AD.wAC,BD是菱形ABCD的两条对角线.ACBD.CBDADBCAO菱形的判定菱形的判定w定理:四条边都相等的四边形是菱形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 回顾 思考 证明 小结
限制150内