大学物理简明教程课后习题及答案.pdf
《大学物理简明教程课后习题及答案.pdf》由会员分享,可在线阅读,更多相关《大学物理简明教程课后习题及答案.pdf(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、习题一1-1 I I与有无不同?和有无不同?和有无不同?其不同在哪里?试举例说明.解:(1)是位移的模,是位矢的模的增量,即,;(2)是速度的模,即.只是速度在径向上的分量.有(式中叫做单位矢),则式中就是速度径向上的分量,不同如题1-1图所示.题1-1图(3)表示加速度的模,即,是加速度在切向上的分量.有表轨道节线方向单位矢),所以式中就是加速度的切向分量.(的运算较复杂,超出教材规定,故不予讨论)1-2设质点的运动方程为=(),=0,在计算质点的速度和加速度时,有人先求出r=,然后根据=及=你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面
2、直角坐标系中,有,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将误作速度与加速度的模。在1T题中已说明不是速度的模,而只是速度在径向上的分量,同样,也不是加速度的模,它只是加速度在径向分量中的一部分。或者概括性地说,前一种方法只考虑了位矢在径向(即量值)方面随时间的变化率,而没有考虑位矢及速度的方向随间的变化率对速度、加速度的贡献。1-3 一质点在平面上运动,运动方程为=3+5,=2+3-4,式 中 以s计,以m计.(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s时刻和=2s时刻的位置矢量,计算这1秒内质点的位移;计 算=
3、0s时刻到=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算=4 s时质点的速度;(5)计算=0s到=4s内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算=4s时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1)(2)将,代入上式即有(3)V(4)则(5)(6)这说明该点只有方向的加速度,且为恒量。1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S处,如题卜4图所示.当人以(m )的速率收绳时,试求船运动的速度和加速度的大小.图 1_4解:设人到船之间绳的长度为,此时绳与水面成角,由图可知将上式对时
4、间求导,得题 1-4 图根据速度的定义,并注意到,是随减少的,即或将再对求导,即得船的加速度1-5 质点沿轴运动,其加速度和位置的关系为=2+6,的单位为,的单位为m.质点在=0处,速度为1 0,试求质点在任何坐标处的速度值.解:;分离变量:两边积分得由题知,时,1-6已知一质点作直线运动,其加速度为=4+3,开始运动时,=5 m =0,求该质点在=1 0 s 时的速度和位置.解:分离变量,得积分,得由题知,二故又因为分离变量,积分得由 题 知,故所以时1-7 一质点沿半径为1 m的圆周运动,运 动 方 程 为=2+3,式中以弧度计,以秒计,求:(1)=2 s (2)当加速度的方向和半径成4
5、5 角时,其角位移是多少?解:时,(2)当加速度方向与半径成角时,有即 亦即则解得 于是角位移为8质点沿半径为的圆周按=的规律运动,式中为质点离圆周上某点的弧长,,都是常量,求:(1)时刻质点的加速度;(2)为何值时,加速度在数值上等于.解:则加速度与半径的夹角为由题意应有叩.当时,1-9 以初速度=2 0抛出一小球,抛出方向与水平面成幔60。的夹角,求:(1)球轨道最高点的曲率半径;(2)落地处的曲率半径.(提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题 1-9图(1)在最高点,又:(2)在落地点,而,1 T 0 飞轮半径为0.4 m =rad ,求
6、=2 s 时边缘上各点的解:当时,则1-11 一船以速率=30km E 沿直线向东行驶,另一小艇在其前方以速率=40kmh-沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何?解:(1)大船看小艇,则有,依题意作速度矢量图如题1 T 3 图(a)题 1-11图由图可知方向北偏西(2)小船看大船,则有,依题意作出速度矢量图如题1 7 3 图(b),同上法,得方向南偏东习题二2-1 一个质量为的质点,在光滑的固定斜面(倾角为)上以初速度运动,的方向与斜面底边解:物体置于斜面上受到重力,斜面支持力.建立坐标:取方向为轴,平行斜面与轴垂直方向为轴.如图2-2.题 2-1 图方向:方向:时
7、由、式消去,得2-2质量为1 6 kg的质点在平面内运动,受一恒力作用,力的分量为=6 N,=-7 N,当=0 时,0,=-2 m s ,=0.求当=2 s (1)位矢;(2)速解:(1)于是质点在时的速度(2)2-3 质点在流体中作直线运动,受与速度成正比的阻力(为常数)作用,=0时质点的速度为,证明(1)时刻的速度为=;(2)由 0 到的时间内经过的距离为=();(3)停止运动前经过的距离为;(4)证明当时速度减至的,式中加为质点的质量.答:分离变量,得即(2)(3)质点停止运动时速度为零,即 t-8,故有(4)当土=时,其速度为即速度减至的.2-4 一质量为的质点以与地的仰角=3 0。的
8、初速从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解:依题意作出示意图如题2-6 图题2-4图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对轴对称性,故末速度与轴夹角亦为,则动量的增量为由矢量图知,动量增量大小为,方向竖直向下.2-5 作用在质量为1 0 k g 的物体上的力为N,式中的单位是s,(1)求 4 s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为2 00 N s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度s 的物体,回答这两个问题.解:(1)若物体原来静止,则,沿
9、轴正向,若物体原来具有初速,则于是同理,这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即亦即解得,(舍去)2-6 一颗子弹由枪口射出时速率为,当子弹在枪筒内被加速时,它所受的合力为 F=()N(为常数),其中以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解:(1)由题意,子弹到枪口时,有得(2)子弹所受的冲量将代入,得(3)由动量定理可求得子弹的质量2-7 设.(1)当一质点从
10、原点运动到时,求所作的功.(2)如果质点到处时需,试求平均功率.(3)如果质点的质量为1 kg,试求动能的变化.解:(1)由题知,为恒力,(2)(3)由动能定理,2-8 如题2T8图所示,一物体质量为兼g,以初速度=3 m s 从斜面点处下滑,它与斜面的摩擦力为8 N,到达点后压缩弹簧2 0 c m 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解:取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。则由功能原理,有式中,再代入有关数据,解得题 2-8 图再次运用功能原理,求木块弹回的高度代入有关数据,得,则木块弹回高度2-9 一个小球与一质量相等的静止小球发
11、生非对心弹性碰撞,试证碰后两小球的运动方向证:两小球碰撞过程中,机械能守恒,有即 题 2-9图(a)题 2-9图(b)又碰撞过程中,动量守恒,即有亦即 由可作出矢量三角形如图(b),又由式可知三矢量之间满足勾股定理,且以为斜边,故知与是互相垂直的.2 T 0 质量为的质点位于()处,速度为,质点受到一个沿负方向的力的作用,求相对于坐标原点的角动量以及作用于质点上的力的力矩.解:由题知,质点的位矢为作用在质点上的力为所以,质点对原点的角动量为作用在质点上的力的力矩为2-1 1 哈雷彗星绕太阳运动的轨道是一个椭圆.它离太阳最近距离为=X 10%时的速率是=X 1 01 s它离太阳最远时的速率是=X
12、 1 0、s?(太阳位于椭圆的一个焦点。)解:哈雷彗星绕太阳运动时受到太阳的引力一一即有心力的作用,所以角动量守恒;又由于哈雷彗星在近日点及远日点时的速度都与轨道半径垂直,故有2T2物体质量为3 kg,=0 时位于,如一恒力作用在物体上,求 3 秒后,(1)物体动量的变化;(2)相对轴角动量的变化.解:解 即,即解(二)V题 2-1 2 图2 T 3 飞轮的质量=6 0 kg,半径=,绕其水平中心轴转动,转速为90 0 r e v m i r f .现利用一制动的闸杆,在闸杆的一端加一竖直方向的制动力,可使飞轮减速.已知闸杆的尺寸如题2-2 5 图所示,闸瓦与飞轮之间的摩擦系数=,飞轮的转动惯
13、量可按匀质圆盘计算.试求:(D 设=1 0 0 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?(2)如果在2 s 内飞轮转速减少一半,需加多大的力?解:(D 先作闸杆和飞轮的受力分析图(如图(b).图中、是正压力,、是摩擦力,和是杆在点转轴处所受支承力,是轮的重力,是轮在轴处所受支承力.题 2-1 3 图(a)题 2-1 3 图(b)杆处于静止状态,所以对点的合力矩应为零,设闸瓦厚度不计,则有对飞轮,按转动定律有,式中负号表示与角速度方向相反.又丫以等代入上式,得由此可算出自施加制动闸开始到飞轮停止转动的时间为这段时间内飞轮的角位移为可知在这段时间里,飞轮转了转.(2),要求飞
14、轮转速在内减少一半,可知用上面式(1)所示的关系,可求出所需的制动力为2-1 4 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴转动.设大小圆柱体的半径分别为和,质量分别为和.绕在两柱体上的细绳分别与物体和相连,和则挂在圆柱体的两侧,如题2-2 6图所示.设=,=,=4 k g,=1 0 k g,=2 k g,且开始时,离地均为=2 m.求:(1)柱体转动时的角加速度;(2)两侧细绳的张力.解:设,和 B分别为,和柱体的加速度及角加速度,方向如图(如图b).题 2 74(a)图 题 2 74(b)图(1),和柱体的运动方程如下:式中而由上式求得由式由式2-1 5 如题2T5图所示,一匀质
15、细杆质量为,长为,可绕过一端的水平轴自由转动,杆于水平位置由静止开始摆下.求:初始时刻的角加速度;(2)杆转过角时的角速度.解:(1)由转动定律,有(2)由机械能守恒定律,有题 2T5图习题三3-1 气体在平衡态时有何特征?气体的平衡态与力学中的平衡态有何不同?答:气体在平衡态时,系统与外界在宏观上无能量和物质的交换;系统的宏观性质不随时间变化.力学平衡态与热力学平衡态不同.当系统处于热平衡态时,组成系统的大量粒子仍在不停地、无规则地运动着,大量粒子运动的平均效果不变,这是一种动态平衡.而个别粒子所受合外力可以不为零.而力学平衡态时,物体保持静止或匀速直线运动,所受合外力为零.3-2 气体动理
16、论的研究对象是什么?理想气体的宏观模型和微观模型各如何?答:气体动理论的研究对象是大量微观粒子组成的系统.是从物质的微观结构和分子运动论出发,运用力学规律,通过统计平均的办法,求出热运动的宏观结果,再由实验确认的方法.从宏观看,在温度不太低,压强不大时,实际气体都可近似地当作理想气体来处理,压强越低,温度越高,这种近似的准确度越高.理想气体的微观模型是把分子看成弹性的自由运动的质点.3-3温度概念的适用条件是什么?温度微观本质是什么?答:温度是大量分子无规则热运动的集体表现,是一个统计概念,对个别分子无意义.温度微观本质是分子平均平动动能的量度.3-4 计算下列一组粒子平均速率和方均根速率?2
17、 14682解:平均速率方均根速率3-5 速率分布函数的物理意义是什么?试说明下列各量的物理意义(为分子数密度,为系统总分子数).(1)(2)(3)(4)(5)(6)解::表示一定质量的气体,在温度为的平衡态时,分布在速率附近单位速率区间内的分子数占总分子数的百分比.0 :表示分布在速率附近,速率区间内的分子数占总分子数的百分比.0 :表示分布在速率附近、速率区间内的分子数密度.0 :表示分布在速率附近、速率区间内的分子数.0:表示分布在区间内的分子数占总分子数的百分比.0:表示分布在的速率区间内所有分子,其与总分子数的比值是.():表示分布在区间内的分子数.3-6题 3-6 图(a)是氢和氧
18、在同一温度下的两条麦克斯韦速率分布曲线,哪一条代表氢?题3-6 图(b)是某种气体在不同温度下的两条麦克斯韦速率分布曲线,哪一条的温度较高?答:图(a)中()表示氧,()表示氢;图(b)中()温度高.题 3-6 图3-7 试说明下列各量的物理意义.(1)(2)(3)(4)(5)(6)解:()在平衡态下,分子热运动能量平均地分配在分子每一个自由度上的能量均为T.()在平衡态下,分子平均平动动能均为.()在平衡态下,自由度为的分子平均总能量均为.()由质量为,摩尔质量为,自由度为的分子组成的系统的内能为.(5)摩尔自由度为的分子组成的系统内能为.(6)摩尔自由度为的分子组成的系统的内能,或者说热力
19、学体系内,1 摩尔分子的平均平动动能之总和为.3-8有一水银气压计,当水银柱为0.7 6 m 高时,管顶离水银柱液面0.1 2 m,管的截面积为X I O m2,当有少量氢(H e)混入水银管内顶部,水银柱高下降为O.6 m,此时温度为2 7 ,试计算有多少质量氧气在管顶(H e 的摩尔质量为0.0 0 4 k g m o l1)?解:由理想气体状态方程得汞的重度氮气的压强氯气的体积3-9 设有个粒子的系统,其速率分布如题6T8图所示.求(1)分布函数的表达式;(2)与之间的关系;(3)速度在到之间的粒子数.(4)粒子的平均速率.(5)到 1 区间内粒子平均速率.题 3-9 图解:(1)从图上
20、可得分布函数表达式满足归一化条件,但这里纵坐标是而不是故曲线下的总面积为,(2)由归一化条件可得(3)(4)个粒子平均速率(5)到区间内粒子平均速率到区间内粒子数3-1 0 试计算理想气体分子热运动速率的大小介于与之间的分子数占总分子数的百分比.解:令,则麦克斯韦速率分布函数可表示为因为,由得3-1 1 I m o l 氢气,在温度为2 7 时,它的平动动能、转动动能和内能各是多少?解:理想气体分子的能量平动动能转动动能内能 J3-1 2 一真空管的真空度约为X l O -P a(即X l o Z m l l g),试 求在2 7 时单位体积中的分子数及分子的平均自由程(设分子的有效直径d=3
21、 X 1 0 1 0 m).解:由气体状态方程得由平均自由程公式3-1 3(1)求氮气在标准状态下的平均碰撞频率;(2)若温度不变,气压降到X I O P a,平均碰撞频率又为多少(设分子有效直径1 0 m)?解:(1)碰撞频率公式对于理想气体有,叩所以有而氮气在标准状态下的平均碰撞频率气压下降后的平均碰撞频率3T 4 I m o l 氧气从初态出发,经过等容升压过程,压强增大为原来的2倍,然后又经过等温膨胀过程,体积增大为原来的2倍,求末态与初态之间(1)气体分子方均根速率之比;(2)分子平均自由程之比.解:由气体状态方程及方均根速率公式对于理想气体,即所以有习题四4-1 下列表述是否正确?
22、为什么?并将错误更正.(1)(2)(3)(4)解:(1)不正确,(2)不正确,(3)不正确,(4)不正确,4-2用热力学第一定律和第二定律分别证明,在图上一绝热线与一等温线不能有两个交点.题 4-2 图解:1.由热力学第一定律有若有两个交点和,则经等温过程有经绝热过程从上得出,这与,两点的内能变化应该相同矛盾.2.若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为,违背了热力学第二定律.4-3 一循环过程如题4-3图所示,试指出:(1)各是什么过程;(2)画出对应的图:(3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?
23、(5)用图中的热量表述其热机效率或致冷系数.解:(D是等体过程过程:从图知有,为斜率由 得故过程为等压过程是等温过程 图 如 题 4-3 图题 4-3 图(3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是图中的图形.(5)题 4-3图 题 4-4图4-4两个卡诺循环如题4-4图所示,它们的循环面积相等,试问:(1)它们吸热和放热的差值是否相同;(2)对外作的净功是否相等;(3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同.4-5 根据及,这是否说明可逆过程的嫡变大
24、于不可逆过程嫡变?为什么?说明理由.答:这不能说明可逆过程的燧变大于不可逆过程燧变,焙是状态函数,燧变只与初末状态有关,如果可逆过程和不可逆过程初末状态相同,具有相同的婚变.只能说在不可逆过程中,系统的热温比之和小于嫡变.4-6 如题4-6图所示,一系统由状态沿到达状态b 的过程中,有 350 J热量传入系统,而系统作功1 2 6 J.(1)若沿时,系统作功42 J,问有多少热量传入系统?(2)若系统由状态沿曲线返回状态时,外界对系统作功为8 4 J,试问系统是吸热还是放热?热量传递是多少?题 4-6图解:由过程可求出态和态的内能之差过程,系统作功系统吸收热量过程,外界对系统作功系统放热4-7
25、 1 m ol 单原子理想气体从3 0 0 K 加热到3 5 0 K,问在下列两过程中吸收了多少热量?增加了多少内能?对外作了多少功?(1)体积保持不变;(2)压力保持不变.解:(1)等体过程由热力学第一定律得吸热对外作功(2)等压过程吸热内能增加对外作功4-8 m,氮气在温度为3 0 0 K时,由 MPa(即 1 a t m)压缩到1 0 MPa.试分别求氮气经等温及绝热压缩后的(1)体积;(2)温度;(3)各过程对外所作的功.解:(1)等温压缩由求得体积对外作功(2)绝热压缩由绝热方程由绝热方程得热力学第一定律,所以4-9 1 m ol 的理想气体的T-V 图如题4-9 图所示,为直线,延
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 简明 教程 课后 习题 答案
限制150内