2023年山西省吕梁学院附属高考考前模拟数学试题含解析.pdf
《2023年山西省吕梁学院附属高考考前模拟数学试题含解析.pdf》由会员分享,可在线阅读,更多相关《2023年山西省吕梁学院附属高考考前模拟数学试题含解析.pdf(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学模拟试卷注意事项:1 .答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2 .答题时请按要求用笔。3 .请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4 .作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5 .保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共1 2小题,每小题5分,共6 0分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 .已知复数2 =(1 +,)(3-)(,为虚数单位),则z的虚部为()A.2B.2iC.4D.4
2、 z2 .某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为()正视图 M现由仇视困A 0 46乃 口 0 2G).牛&n /8 0冗A.8 +-B.8 +-C.4 +-D.4 +-3 3 3 33.若2 +3 a =3 +2。,则下列关系式正确的个数是()V。0 a=b 0ab b 45.设X,y满足则2=犬+的取值范 围 是()x-2 y 26.已知实数x,y满足约束条件 y-x K l ,若z =2 x-y的最大值为2,则实数上的值为()y +1 2 依5 7A.1 B.-C.2 D.-3 3l o g 1 x,0 1
3、,A.(-1,0)B.(7,0)D(l,+8)c.(-0 0,-1)U(o,-K O)D.(0,1)8 .等差数列 q 的前项和为S“,若q=3,S s=3 5,则数列 q,的公差为()A.-2 B.2 C.4 D.79 .已知关于x的 方 程 由s i n x+s i n 5-x)=z在区间 0,2%)上有两个根当,x2,且 上 一 回2 4,则实数加的取值范围是()1,2)C.0,1)D.0,110 .已知函数f(x)=lnx,若尸(x)=/(x)-3日,有2个零点,则实数人的取值范围为()12.已知三棱柱A B C-A B C的6个 顶 点 都 在 球。的球面上.若A3 =3,A C =
4、4,A B A C,例=1 2,则球0 0勺半径为()A.B.2 5 C.D.37 10二、填空题:本题共4 小题,每小题5 分,共 20 分。x+y-3 m14.某校共有师生16 0 0 人,其中教师有10 0 0 人,现用分层抽样的方法,从所有师生中抽取一个容量为8 0 的样本,则抽 取 学 生 的 人 数 为.的展开式中,x的系数等于一.16 .为了抗击新型冠状病毒肺炎,某医药公司研窕出一种消毒剂,据实验表明,该药物释放量乂次/加3)与时间t(h),1kt,0 Z 一的函数关系为y =I 2(如图所示),实验表明,当药物释放量y-kt 2k=;(2)为了不使人身体受到药物伤害,若使用该消
5、毒剂对房间进行消毒,则在消毒后至少经过_ _ _ _ _ _ 分钟人方可进入房间.三、解答题:共 7 0 分。解答应写出文字说明、证明过程或演算步骤。17.(12 分)已知函数/(%)=|2 1-。|(1)若=1,不等式/(2幻一/。+1)2 2 的解集;若 V xwR J(2x)r N 2,求实数。的取值范围.18.(12 分)如图,在直角梯形 A B C。中,AB/D C,ZA BC9 0,A B =2DC=2 B C,E 为 A B 的中点,沿 DE将 折起,使得点A 到点尸位置,且 PE上EB,M为 心 的 中 点,N 是 8c 上的动点(与点B,C 不重合).(I)证明:平面E M
6、NJ_平面P B C垂直;(II)是否存在点N,使得二面角B-E N-M的 余 弦 值 逅?若存在,确定N点位置;若不存在,说明理由.619.(12分)如图,在矩形A B C O中,A 5 =2,B C =3,点E是边A O上一点,且A E =2EZ),点是8 E的中点,将A A B E沿 着 的 折 起,使点A运动到点S处,且满足SC=SO.(2)求二面角C S3的余弦值.20.(12分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是上,且是否2休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生
7、调剂现象的概率;(2)设营业店铺数为X,求X的分布列和数学期望.21.(12分)在A A B C中,角A、B、C的对边分别为。、b、c,且cosA=好.5(1)若a=5,c=2亚,求的值;兀(2)若 8 =一,求 tan2c 的值.422.(10 分)已知函数/(x)=lnx.(1)求函数g(x)=x)-x +l的零点;(2)设函数/(X)的图象与函数y =x +f-l的图象交于A(X1,y),8(%,切)(不 )两点,求证:a0,且不等式(7-1)/3可-1)2对一切正实数*恒成立,求A的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是
8、符合题目要求的。1.A【解析】对复数二进行乘法运算,并计算得到z=4+2 i,从而得到虚部为2.【详解】因为z=(l+i)(3 z)=4+2 所以的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意产=1.2.A【解析】由题意得到该几何体是一个组合体,前半部分是一个高为2百底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为v=1 x X42X2 6 +LX乃x4x2百=8+勺 生3 4 2 3 3故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是
9、几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3.D【解析】a,可看成是y=7与/(x)=2+3x和g(x)=3+2x交点的横坐标,画出图象,数形结合处理.【详解】令/(x)=2+3x,g(x)=3+2x,作出图象如图,由f(x)=2+3尤,g(x)=3,+2 x的图象可知,O)=g(O)=l,/=g(l)=5,正确;x e(-oo,0),f(x)g(x),有b a g
10、(x),有0 4%1,正确;X G(1,+O O),/(x)g(x),有l b 4由题知x,y满足尤一旷2-1,可行域如下图所示,x-2y 1,当1人2时,X在点8处取得最大值,即2(一(金 +=2,得k=2;当%2时,z在 点C处取得最大值,即U-1 )3W rH加=2,得k=:67(舍 去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.7.C【解析】转化g(x)=/(x)+质 有1个零点为丁=/。)与丁=-丘的图象有1个交点,求导研究临界状态相切时的斜率,数形结合即得解.【详解】g(x)=/(x)+如 有1个零点等价于y=f M与y=
11、一依的图象有1个交点.记 (x)=-x(x-l)(x-3)(x 1),则过原点作 h(x)的切线,设切点为(公,%),则切线方程为.y 一 场(小)=M(x)(x-x0),又切线过原点,即/(%)=。0)X0,将 h(x0)=-x0(x0-l)(x0-3),h(x0)=-3 片+8 x0-3代 入 解 得%=2.所以切线斜率为(2)=-3X22+8X2-3=1,所以左1或左0.故选:C【点睛】本题考查了导数在函数零点问题中的应用,考查了学生数形结合,转化划归,数学运算的能力,属于较难题.8.B【解析】在等差数列中由等差数列公式与下标和的性质求得与,再由等差数列通项公式求得公差.【详解】在等差数
12、列 凡 的前项和为S“,则Ss=或产)=5%=35 =%=7贝 U/=4+2 =3+2d =7 n d =2故选:B【点睛】本题考查等差数列中求由已知关系求公差,属于基础题.9.C【解析】7T先利用三角恒等变换将题中的方程化简,构造新的函数y =2sin(x +工),将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合上一天怛万,解得,的取值范围.【详解】由题化简得百sinx+cosx =:,=2sin(x +:),6TT作出y =2sin(x +:)的图象,又由|与一到2万易知()Wm 0,函数g(x)在(0,6)上单调递增;当天(五,+0 0)时,g(X)0,函数g(X)在(&,
13、+0 0)上单调递减.,当尤=五 时,g(X)m ax=,6 e若直线y =女和g(x)=*有两个交点,则k e.实数攵的取值范围是(0,*).故选:C.【点睛】本题主要考查了根据零点求参数范围,解题关键是掌握根据零点个数求参数的解法和根据导数求单调性的步骤,考查了分析能力和计算能力,属于中档题.11.B【解析】根据x 0,可排除A。,然后采用导数,判断原函数的单调性,可得结果.【详解】由题可知:a0,所以当x 0,又 f(x)=e*+a,4-f(x)0,则x ln(-a)令/(x)0,则x ln(-a)所以函数/(x)在(Fn(-a)单调递减在(ln(-a),+a)单调递增,故选:B【点睛】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 山西省 吕梁 学院 附属 高考 考前 模拟 数学试题 解析
限制150内