《一元一次不等式(组)的解法(解析版).pdf》由会员分享,可在线阅读,更多相关《一元一次不等式(组)的解法(解析版).pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【第10讲】一元一次不等式(组)的解法编写:廖云波 初审:谭光垠 终审:谭光垠 廖云波【基础知识回顾】知识点1 一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组.2x-30如:卜+4 a9xb-J_ 1 同大取大b axa9x.bxb同小取小b aVxbbxa,xb无解 1_!_h a大大、小小、取不了(3)求不等式组的解集的过程,叫做解不等式组.解一元一次不等式组的一般步骤为:分别解不等式组中的每一个不等式;将每一个不等式的解集在数轴上表示出来,找出它们的公共部分;根据找出的公共部分写出这个一元一次不等式组的解集(若没有公共部分,说明这个不等式组无解).用
2、数轴表示不等式组的解集时,要时刻牢记:大于向右画,小于向左画,有等号画实心圆点,无等号画空心圆圈.【合 作 探 究】探究一 一元一次不等式组及其解法6x 2N 3x 4 2x+l 1-x 1-1【例1-1】解 不 等 式 组I 3 2,并把它的解集在数轴上表示出来.【分 析 工 先 求 不等式的解集,然后在数轴上表示不等式的解集,求它们的公共部分即不等式组的解集.【解 析】:解不等式,得;解不等式,得x l .所以不等式组的解集为2 x 1,解不等式,得 烂8所以不等式组的解集为一1XW 8.即原不等式的解集为一1 V X W 8解法 2:_ _ _ _ _ _ _ _ _ _ _ _I,-3
3、 2x-l l 5,-2 2x 1 6,-l x 8.所以原不等式的解集为-1 x W 8归纳总结:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如 解 法2.探究二含参数的一元一次不等式组x 2。-5 无解,求 a 的取值范围.【解析】:依题意:2a-5 3a-2,解得a r 3归纳总结:特别地,当 2a-5 与 3a-2 相等时,原不等式组也无解,请注意体会,以后做此类型的题目不要忽略对它们相等时的考虑.【课 后 作 业】1.解不等式组:5元一2 -%1 3 答案 2 x 3【解析】:解不等式,得:一 2,在数釉上表
4、示这两个不等式的解集为:原不等式组的解集为:-2 x 0 2 x-l 3x+4【分析】:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个.(3)注意在数轴表示解集时“空心点”与“实心点”的区别4X -解法一:解不等式,得:.3,解不等式,得:x 2,解不等式,得:x ,在数轴上表示这三个不等式的解集为:2.原不等式组的解集为:3解法二:解不等式,得:2解不等式,得:4I由x 2 与得:x x再与 3求公共解集得:3一x 1 X-4 3X+3【解析】:解不等式得:x-2,解不等式得:x 3(x +1)x 1 7 x4.求 不
5、 等 式 组1 2-2【分析】:按照不等式组的解法,0的整数解.先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解.*【解析】:解不等式,得 2;解不等式,得 烂4.在数轴上表示不等式的解集(如图)0 立 42-4 x 4 4所以不等式组的解集为2所以它的整数解为3,4.x2机7无解,则机的取值范围是什么?【解析】:要使不等式组无解,故必须6+从而得加22.6.若关于x的不等式组x +4 x ,-+13 2x+a-I-1 c【解析】:由3 2 可解 出 耳|x 2,而由I I可解出x 一。,而不等式组的解集为*x-1 -37.不等式组卜一“的解集为x 2,试求k 的取值范围.【解析】:由得x V 2,由得xk,.不等式组的解集为x2.8.已知关于x 的不等式组I _I的整数解共有5 个,求机的取值范围.【解析】:不等式组 一根2 的解为:xm不等式组5-2 x l的解为:|由于原不等式组有解,解 集 为 I 臼 I在此解集内包含5 个整数,则这5 个整数依次是国A m 必须满足m I0 _9.若不等式组I _I的解集为一 则 臼 _ _ _ _ _.=.【解析】:由知x a+2,由知 2,V a+2=-l,2,.a=-3,b=2,.a+b=r,./+叱6=(T严 6 =1.
限制150内