湘教版九年级数学上册教案.pdf
《湘教版九年级数学上册教案.pdf》由会员分享,可在线阅读,更多相关《湘教版九年级数学上册教案.pdf(142页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第1章一元二次方程单元要点分析教材内容1 .本单元教学的主要内容.一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.2 .本单元在教材中的地位与作用.一元二次方程是在学习 一元次方程、二元一次方程、分式方程等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容.教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨
2、,老师点评分析,建立数学模型.根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法直接开方法,导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解a x2+b x+c=0 (a W O)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b?-4 a c 0,b2-4 a c=0,b2-4 a c 0,即(m-4)2+1 0不论m取何值,该方程都是一元二次方程.五、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一
3、元二次方程的一般形式a x?+b x+c=O (a#0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.六、布置作业1.教材 P34 习题 22.1 1、2.2.选用作业设计.作业设计一、选择题1.在下列方程中,一元二次方程的个数是().3x 2+7=。a x?+b x+c=O (x-2)(x+5)=x2-l 3 x2-=0 xA.1个 B.2 个 C.3 个 D.4 个2.方程2x 2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为().A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.p x 2-3x+p L q=O是关于x的一
4、元二次方程,则().A.p=l B.p 0 C.p#0 D.p 为任意实数二、填空题1.方 程 3X2-3=2X+1 的 二 次 项 系 数 为,一 次 项 系 数 为,常数项为2.一兀二次方程的一般形式是.3.关于x的 方 程(a-1)x 2+3x=0 是一兀二次方程,则 a 的取值范围是.三、综合提高题1.a 满足什么条件时,关于x的方程a (x2+x)=A/3 x-(x+1)是一元二次方程?2.关 于 x的 方 程(2m2+m)x m+43x=6可能是一元二次方程吗?为什么?3.一块矩形铁片,面 积 为 In?,长比宽多3 m,求铁片的长,小明在做这道题时,是这样做的:设铁片的长为X,列
5、出的方程为x(x-3)=1,整 理 得:x 2-3x-l=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:第一步:X1234X2-3X-1-3-3所以,x 第二步:X3.13.23.33.4X2-3X-1-0.96-0.36所以,x(1)请你帮小明填完空格,完成他未完成的部分;(2)通过以上探索,估 计 出 矩 形 铁 片 的 整 数 部 分 为,十分位为答案:一 1.A 2.B 3.C二、1.3,-2,-42.ax+bx+c=O(aWO)3.aWl三、1.化 为:ax2+(a.百+1)x+l=O,所以,当 aWO时是一元二次方程.m+1 =22.可能,因为当 ,2 厂+机w
6、 0 当m=l时,该方程是一元二次方程.3.(1)-1,3,3,4,-0.01,0.36,3.3,3.4(2)3,31.1 一元二次方程第二课时教学内容1.一元二次方程根的概念;2.根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.教学目标了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点关键1.重点:判定一个数是否是方程的根;2.难点关键:由实际问题列出的一元二次方程解
7、出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.问题1.如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?8设梯子底端距墙为x m,那么,根据题意,可得方程为.整理,得.列表:x|o|l|2|3|4|5|6|7|8问题2.一个面积为120 m 2的矩形苗圃,它的长比宽多2 m,苗圃的长和宽各是多少?设苗圃的宽为xm,则长为 m.根据题意,得.整理,得.列表:x l o l 1|2|3|4|5|6|7|8|9|10 111老师点评(略)二、探索新知提 问(1)问题1 中一元二次方程的解是多少?问题2
8、 中 元二次方程的解是多少?(2)如果抛开实际问题,问题1 中还有其它解吗?问题2 呢?老师点评:(1)问题1 中 x=6 是 x 2-3 6=0 的解,问题2中,x=1 0 是 x,2 x-1 2 0=0 的解.(3)如果抛开实际问题,问 题(1)中还有x=-6 的解;问题2中还有x=-1 2 的解.为了与以前所学的一元一次方程等只有一个解的区别,我们称:一元二次方程的解叫做一元二次方程的根.回过头来看:x 2-3 6=0 有两个根,个是6,另一个是一6,但-6 不满足题意;同理,问题2中的x=-1 2 的根也满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些
9、根是否确实是实际问题的解.例 1.下面哪些数是方程2 x 2+1 0 x+1 2=0 的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.解:将上面的这些数代入后,只有-2 和-3 满足方程的等式,所以x=-2 或 x=-3 是一元二次方程2X2+1 0X+1 2=0 的两根.例 2.你能用以前所学的知识求出下列方程的根吗?(1)X2-6 4=0 (2)3X2-6=0 (3)x2-3 x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.解:(1)移项得x?=6 4根据平方根的意义,得:x=8即
10、X 1=8,X 2=-8(2)移项、整理,得 x?=2根据平方根的意义,得 x=J 5即 X 1=J ,X 2=-5/2(3)因为 X2-3X=X(X-3)所以 XJ3X=0,就是 x (x-3)=0所 以x=0或x-3=0即 x)=0 X 2=3三、巩固练习教 材P 3 3思 考 题 练 习1、2.四、应用拓展例3.要剪 块 面 积 为1 5 0 cm 2的长方形铁片,使它的长比宽多5c m,这块铁片应该怎样剪?设 长为x c m,则 宽 为(x-5)cm列方程 x (x-5)=1 5 0,B P X2-5X-150=0请根据列方程回答以下问题:(1)x可能小于5吗?可 能 等 于1 0吗?
11、说说你的理由.(2)完成下表:x-5 x-1 5 0(3)你知道铁片的长x是多少吗?分析:x 2-5 x-1 5 0 R与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,但是我们可以用一种新的方法一一“夹逼”方法求出该方程的根.解:(1)x不可能小于5.理由:如 果x 5,则 宽(x-5)0,不合题意.x不可能等于1 0.理 由:如 果x=1 0,则面积X2-5X-150=-100,也不可能.(2)X1 01 11 21 3 1 41 5 1 6 1 7.X2-5X-150-1 0 0-8 4-6 6-4 6-2 4 02 6 5 4.(3)铁 片 长x=1
12、 5 cm五、归 纳 小 结(学生归纳,老师点评)本节课应掌握:(1)一元二次方程根的概念及它与以前的解的相同处与不同处;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程的根.六、布置作业1 .教 材P34复习巩固3、4综合运用5、6、7拓广探索8、9.2 .选用课时作业设计.作业设计一、选择题1.方 程x (x-1)=2的两根为().A.X =0,x 2=12 .方程 a x (x-b)A.X|=b,X 2=aB.X =0,X 2=-l(b-x)=0的 根 是(1B.X =b,x 2=a3 .已知x=-l是方程a x2+bx+c=0的 根(bW O),则D.X|
13、=-l,x 2=22 2D.X|=a ,x 2=b).A.1 B.-1 C.0 D.2二、填空题1 .如果X2-81=0,那么X2-81=0的两个根分别是x尸,x2=2 .己知方程5 x 2+m x-6=0的一个根是x=3,则m的值为.3 .方 程(x+1)2+x (x+1)=0,那么方程的根 X i=;X2=.三、综合提高题1 .如果x=l是方程ax 2+b x+3=0的一个根,求(a-b)?+4 ab的值.2 .如果关于x的一元二次方程ax2+b x+c=0 (a#0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.X2 13 .在一次数学课外活动中,小明给全班同学
14、演示了一个有趣的变形,即 在()x尤 2 _ Y2-2-2X-+1=0,令-=y,则有y2-2 y+l=0,根据上述变形数学思想(换元法),解决X X小明给出的问题:在(x2-l)2+(x2-l)=0中,求 出(x2-l)2+(x2-l)=0的根.答案:1.D 2.B 3.A二、1.9,-9 2.-1 3 3.-1,1-7 2三、1.由已知,得 a+b=-3,原式=(a+b)(-3)2=9.2.a+c=b,a-b+c=O,把 代入得ax2+b x+c=aX (-1)2+b X (-1)+c=a-b+c=O,A-l 必是该方程的一根.3.设 y=x M,则 y 2+y=o,y)=0,y 2=-l
15、,即当 X?-1=0,X 1=1,X 2=-1 ;当 y2=-l 时,x2-l=-l,x2=0,.*.X 3=X4=0,*.X 1 =1 ,X 2=-1,X 3=X 4=0 是原方程的根.1.2解一元二次方程的算法(1)教学内容运用直接开平方法,即根据平方根的意义把个一元二次方程“降次”,转化为两个一元一次方程.教学目标理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax 2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(e x+f)、c=0 型的一元二次方程.重难点关键1 .重点:运用开平方法解形如(x+m)2=n (n 2
16、 0)的方程;领会降次一一转化的数学思想.2 .难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解 形 如(x+m)2=n (n 2 0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问 题 1.填空(1)X2-8X+=(X-)2;(2)9X2+12X+=(3x+)2;(3)x2+p x+=(x+)2.问题2.如图,在AABC中,N B=9 0 ,点 P 从点B开始,沿 AB边向点B以 l c m/s的速度移动,点 Q从点B开始,沿 BC边向点C以 2 c m/s的速度移动,如 果 A B=6 c m,BC=12cm,P、Q 都从B 点同时出发,几秒后aP
17、BQ 的面积等于8cm?老师点评:问 题 1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(3)2 2.2 2问题2:设 x 秒后 PB Q 的面积等于8cm2贝 lJPB=x,BQ=2x依题意,得:x 2x=82X2=8根据平方根的意义,得*=2行B P x =2 2,X2=-2 V2可以验证,2&和-2行 都 是 方 程 x2x=8的两根,但是移动时间不能是负值.2所 以 20秒后APBQ的面积等于8cm2.二、探索新知上面我们已经讲了 X2=8,根据平方根的意义,直接开平方得X=2 J 5,如果x 换元为 2 t+l,即(2t+l)2=8,能否也用直接开平方的方法求解呢?(
18、学生分组讨论)老师点评:回答是肯定的,把 2t+l变为上面的x,那 么 2 t+l=2 j5即 2t+l=20,2t+l=-2后方程的两根为t2=-J l2 2例 1:解方程:X2+4X+4=1分析:很清楚,x?+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.解:由已知,得:(x+2)2=1直接开平方,得:x+2=l即 x+2=1,x+2=-1所以,方程的两根X|=-L X 2=-3例 2.市政府计划2 年内将人均住房面积由现在的1 0 n?提高到1 4.4 m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是1 0+1 0 x=1 0
19、(1+x);二年后人均住房面积就应该是1 0 (1+x)+1 0 (1+x)x=1 0 (1+x)2解:设每年人均住房面积增长率为X,则:1 0 (1+x)2=1 4.4(1+x)2=1.4 4直接开平方,得 l+x=1.2即 l+x=1.2,l+x=-1.2所以,方程的两根是X I=0.2=20%,X 2=-2.2因为每年人均住房面积的增长率应为正的,因此,X 2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习
20、教材P 3 6 练习.四、应用拓展例 3.某公司一月份营业额为1 万元,第一季度总营业额为3.3 1 万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应 是(1+x)2.解:设该公司二、三月份营业额平均增长率为X.那么 1+(1+x)+(1+x)2=3.3 1把(1+x)当成一个数,配方得:3(l+x+-)2=2.5 6,即(x+-)2=2.5 62 23 3 3X H-=1.6,即 X H-=1.6,X H =-1.62 2 2方程的根为X|=1 0%X2=-3.1因
21、为增长率为正数,所以该公司二、三月份营业额平均增长率为1 0%.五、归纳小结本节课应掌握:由应用直接开平方法解形如X 2=p (p 2 0),月幺X=土后转化为应用直接开平方法解形 如(m x+n)I p (p 2 0),那 么 m x+n=J万,达到降次转化之目的.六、布置作业1 .教材P 4 5 复习巩固1、2.2.选用作业设计:一、选择题I .若 x 4 x+p=(x+q)2,那么p、q的值分 别 是().A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-22.方程3 x 2+9=0 的 根 为().A.3 B.-3 C.3 D.无实数根23.用 配方法
22、解方程x 2-x+l=0 正确的解法是().3A.X士 迪3 3891QB.(x-)2=-,原方程无解3 959C.3|)2 亚 2-V5X j=-1-,X2=-3 3/2、2 5 1D.(X-)=1,x i=,x?=-3 3 3二、填空题1 .若 8 x 2-1 6=0,则 x的值是.2.如果方程2(x-3)2=7 2,那么,这个一元二次方程的两根是3 .如果a、b 为实数,满足J 3 a+4 +b 2-1 2b+3 6=0,那么ab 的值是三、综合提高题1 .解关于x的 方 程(x+m)I n.2.某农场要建个长方形的养鸡场,鸡 场 的 边 靠 墙(墙 长 25 m),另三边用木栏围成,木
23、栏长4 0 m.(1)鸡场的面积能达到1 8 0 m 2吗?能 达 到 20 0 m 吗?(2)鸡场的面积能达到21 0 m 2吗?3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,并说明你制作的理由吗?答案:-、1.B 2.D 3.B二、1.0 2.9 或-3 3.-8三、1.当 n 2 0 时,x+m=y n,X|=-/n -m,X 2=-V/?-m.当 n 0 时,无解2 .(1)都能达 到.设宽为x,则长为4 0-2 x,依题意,得:x (4 0-2 x)=1 8 0整理,得:X2-2 0X+9 0=0
24、,X 1=i o+V i o,x2=i o-V i o;同理 x (4 0-2 x)=2 0 0,x,=x2=1 0,长为 4 0-2 0=2 0.(2)不能达到.同理x (4 0-2 x)=2 1 0,x2-2 0 x+1 0 5=0,b2-4 a c=4 0 0-4 I 0=-1 0 0)或(m x+n)2=p (p 0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.重难点关键1 .重点:讲 清“直接降次有困难,如x 2+6 x-1 6=0的一元二次方程的解题步骤.2 .难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生
25、活动)请同学们解下列方程(1)3X2-1=5(2)4 (x-1)2-9=0 (3)4 x2+1 6 x+1 6=9老师点评:上面的方程都能化成x 2=p或(m x+n)2=p (p 2 0)的形式,那么可得x=y p m x+n=-yfp(p N O).如:4X2+16X+16=(2X+4)2二、探索新知列出下面二个问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问 题1:印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湘教版 九年级 数学 上册 教案
限制150内