《2023年整式的乘法与因式分解知识点总结归纳及例题.pdf》由会员分享,可在线阅读,更多相关《2023年整式的乘法与因式分解知识点总结归纳及例题.pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师总结 优秀知识点 整式乘除与因式分解 一知识点(重点)1幂的运算性质:am anamn (m、n 为正整数)同底数幂相乘,底数不变,指数相加例:(2a)2(3a2)3 2nma amn (m、n 为正整数)幂的乘方,底数不变,指数相乘例:(a5)5 3nnnbaab (n 为正整数)积的乘方等于各因式乘方的积例:(a2b)3 练习:(1)yxx2325 (2))4(32bab (3)aab 23(4)222zyyz (5))4()2(232xyyx (6)22253)(631accbaba 4nmaa amn (a0,m、n 都是正整数,且 mn)同底数幂相除,底数不变,指数相减 例:(1
2、)x8x2 (2)a4a (3)(ab)5(ab)2(4)(-a)7(-a)5 (5)(-b)5(-b)2 5零指数幂的概念:a01 (a0)任何一个不等于零的数的零指数幂都等于 l 例:若1)32(0ba成立,则ba,满足什么条件?6负指数幂的概念:appa1 (a0,p 是正整数)任何一个不等于零的数的p(p 是正整数)指数幂,等于这个数的 p 指数幂的倒数 也可表示为:ppnmmn(m0,n0,p 为正整数)7单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式 例:(1)223123abcabcba (2)
3、4233)2()21(nmnm 8单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加 例:(1))35(222baabab (2)ababab21)232(2 名师总结 优秀知识点(3))32()5(-22nmnnm (4)xyzzxyzyx)(2322 9多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加 例:(1))6.0(1xx)(2))(2(yxyx (3)2)2nm(练习:1计算 2x 3(2xy)(12xy)3的结果是 2(310 8)(410 4)3若 n 为正整数,且 x
4、 2n3,则(3x 3n)2的值为 4如果(a nbab m)3a 9b 15,那么 mn 的值是 5a 2(2a 3a)6(4x 26x8)(12x 2)72n(13mn 2)8若 k(2k5)2k(1k)32,则 k 9(3x 2)(2x3y)(2x 5y)3y(4x5y)10在(ax 2bx3)(x 212x8)的结果中不含 x 3和 x 项,则 a,b 11一个长方体的长为(a4)cm,宽为(a3)cm,高为(a5)cm,则它的表面积为 ,体积为 。12一个长方形的长是 10cm,宽比长少 6cm,则它的面积是 ,若将长方形的长和都扩大了 2cm,则面积增大了 。10单项式的除法法则:
5、单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式 例:(1)28x4y27x3y(2)-5 a5b3c15a4b(3)(2x2y)3(-7 xy2)14x4y3 11多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加 例:练习:1计算:(1)223247173yxzyx;(2)2232232yxyx;(3)26416baba (4)322324nnxyyx(5)39102104 xyxyyx6)63()1(2)5()15105()2(3223ababbaba数不变指数相减例零指数幂的概念
6、任何一个不等于零的数的零指数幂都法则单项式相乘把系数同底数幂分别相乘作为积的因式对于只在一个单例名师总结优秀知识点多项式与多项式的乘法法则多项式与多项式相乘名师总结 优秀知识点 2计算:(1)33233212116xyyxyx;(2)32232512152xyyxyx(3)22221524125nnnnbababa 3计算:(1)234564yxxyyxyx;(2)235616babababa 4.若(ax3my12)(3x3y2n)=4x6y8,则 a=,m=,=;易错点:在幂的运算中,由于法则掌握不准出现错误;有关多项式的乘法计算出现错误;误用同底数幂的除法法则;用单项式除以单项式法则或多
7、项式除以单项式法则出错;乘除混合运算顺序出错。12乘法公式:平方差公式:(ab)(ab)a2b2 文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差 完全平方公式:(ab)2a22abb2 (ab)2a22abb2 文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的 2 倍 例 1:(1)(7+6x)(76x);(2)(3y x)(x3y);(3)(m 2n)(m2n)例 2:(1)(x+6)2 (2)(y-5)2 (3)(-2x+5)2 练习:1、4352aa=_。3222323()2()()x x yx yxy _。2、2323433428
8、126babababa(_)数不变指数相减例零指数幂的概念任何一个不等于零的数的零指数幂都法则单项式相乘把系数同底数幂分别相乘作为积的因式对于只在一个单例名师总结优秀知识点多项式与多项式的乘法法则多项式与多项式相乘名师总结 优秀知识点 3、222_9(_)xyx;2235(7)xxx(_)4、已知15xx,那么331xx=_;21xx=_。5、若22916xmxyy是一个完全平方式,那么 m 的值是_。6、多项式2,12,2223xxxxxx的公因式是_。7、因式分解:2783x_。8、因式分解:224124nmnm_。9、计算:8002.08004.08131.0_。10、Ayxyxyx)(
9、22,则A=_ 易错点:错误的运用平方差公式和完全平方公式。13因式分解(难点)因式分解的定义 把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解 掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止 弄清因式分解与整式乘法的内在的关系 因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式 二、熟练掌握因式分解的常用方法 1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,
10、公因式的构成一般情况下有三部分:系数一各项系数的最大公约数;字母各项含有的相同字母;指数相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项(4)注意点:提取公因式后各因式应该是最简形式,即分解到“底”;如果多项式的第一项的系数是负的,一般要提出“”号,使括号内的第一项的系数是正的 例:(1)323812a bab c (2)35247535x yx y 2、公式法 运用公式法分解因式的实质是把整式中的乘法公式反过来使用;数不变指数相减例零指数幂的概念任何一个不
11、等于零的数的零指数幂都法则单项式相乘把系数同底数幂分别相乘作为积的因式对于只在一个单例名师总结优秀知识点多项式与多项式的乘法法则多项式与多项式相乘名师总结 优秀知识点 常用的公式:平方差公式:a2b2(ab)(ab)完全平方公式:a22abb2(ab)2 a22abb2(ab)2 例:(1)2220.25a bc (2)29()6()1abba (3)42222244a xa x yx y (4)22()12()36xyxy zz 练习:1、若16)3(22xmx是完全平方式,则m的值等于_。2、22)(nxmxx则m=_n=_ 3、232yx与yx612的公因式是 4、若nmyx=)()(4
12、222yxyxyx,则 m=_,n=_。5、在多项式4224222294,4,tsyxbanm中,可以用平方差公式分解因式的 有_,其结果是 _。6、若16)3(22xmx是完全平方式,则 m=_。7、_)(2(2(_)2xxxx8、已知,01200520042xxxx则._2006x 9、若25)(162Mba是完全平方式 M=_。10、22)3(_6xxx,22)3(9_xx 11、若229ykx是完全平方式,则 k=_。12、若442 xx的值为 0,则51232 xx的值是_。13、若)15)(1(152xxaxx则a=_。14、若6,422yxyx则xy_。15、方程042 xx,的
13、解是_。易错点:用提公因式法分解因式时易出现漏项,丢系数或符号错误;分解因式不彻底。中考考点解读:整式的乘除是初中数学的基础,是中考的一个重点内容.其考点主要涉及以下几个方面:考点 1、幂的有关运算 数不变指数相减例零指数幂的概念任何一个不等于零的数的零指数幂都法则单项式相乘把系数同底数幂分别相乘作为积的因式对于只在一个单例名师总结优秀知识点多项式与多项式的乘法法则多项式与多项式相乘名师总结 优秀知识点 例 1(2009 年湘西)在下列运算中,计算正确的是()(A)326aaa (B)235()aa (C)824aaa (D)2224()aba b 分析:幂的运算包括同底数幂的乘法运算、幂的乘
14、方、积的乘方和同底数幂的除法运算.幂的运算是整式乘除运算的基础,准确解决幂的有关运算的关键是熟练理解各种运算的法则.解:根据同底数幂的乘法运算法则知52323aaaa,所以(A)错;根据幂的乘方运算法则知63232)(aaa,所以(B)错;根据同底数幂的除法法则知62828aaaa,所以(C)错;故选(D).例 2.(2009 年齐齐哈尔)已知102m,103n,则3210mn_ 分析:本题主要考查幂的运算性质的灵活应用,可先逆用同底数幂的乘法法则mnm naaa,将指数相加化为幂相乘的形式,再逆用幂的乘方的法则()mnmnaa,将指数相乘转化为幂的乘方的形式,然后代入求值即可.解:3210m
15、n3232321010(10)102372mnmn ().考点 2、整式的乘法运算 例 3(2009 年贺州)计算:31(2)(1)4aa=分析:本题主要考查单项式与多项式的乘法运算.计算时,按照法则将其转化为单项式与单项式的乘法运算,注意符号的变化.解:)141()2(3aa1)2(41)2(3aaaaa2214.考点 3、乘法公式 例 4.(2009 年山西省)计算:2312xxx 分析:运用多项式的乘法法则以及乘法公式进行运算,然后合并同类项.解:2312xxx=2269(22)xxxxx =226922xxxxx =97x.例 5.(2009 年宁夏)已知:32ab,1ab,化简(2)
16、(2)ab的结果是 分析:本题主要考查多项式与多项式的乘法运算.首先按照法则进行计算,然后灵活变形,使其出现(ab)与ab,以便求值.解:(2)(2)ab=422baab=4)(2baab=242321.考点 4、利用整式运算求代数式的值 例 6(2009 年长沙)先化简,再求值:22()()()2ab ababa ,其中133ab,分析:本题是一道综合计算题,主要在于乘法公式的应用.解:22()()()2ab ababa 数不变指数相减例零指数幂的概念任何一个不等于零的数的零指数幂都法则单项式相乘把系数同底数幂分别相乘作为积的因式对于只在一个单例名师总结优秀知识点多项式与多项式的乘法法则多项
17、式与多项式相乘名师总结 优秀知识点 2222222abaabba 2ab 当3a,13b 时,122 33ab 2.考点 5、整式的除法运算 例 7.(2009 年厦门)计算:(2xy)(2xy)y(y6x)2x 分析:本题的一道综合计算题,首先要先算中括号内的,注意乘法公式的使用,然后再进行整式的除法运算.解:(2xy)(2xy)y(y6x)2x (4x2y2y26xy)2x (4x26xy)2x 2x3y.考点 6、定义新运算 例 8.(2009 年定西)在实数范围内定义运算“”,其法则为:22abab,求方程(43)24x 的解 分析:本题求解的关键是读懂新的运算法则,观察已知的等式22
18、abab 可知,在本题中“”定义的是平方差运算,即用“”前边的数的平方减去“”后边的数的平方.解:22abab ,2222(43)(43)77xxxx 22724x 225x 5x 考点 7、乘法公式 例 3(1)(2009 年白银市)当31xy、时,代数式2()()xy xyy的值是 (2)(2009 年十堰市)已知:a+b=3,ab=2,求 a2+b2的值.解析:问题(1)主要是对乘法的平方差公式的考查.原式=x 2-y 2+y 2=x 2=3 2=9.问题(2)考查了完全平方公式的变形应用,2222)(bababa,52232)(2222abbaba.说明:乘法公式应用极为广泛,理解公式
19、的本质,把握公式的特征,熟练灵活地使用乘法公式,可以使运算变得简单快捷,事半功倍.考点 8、因式分解 例 4(1)(2009 年本溪市)分解因式:29xyx (2)(2009 年锦州市)分解因式:a2b-2ab2+b3=_.解析:因式分解的一般步骤是:若多项式的各项有公因式,就先提公因式,然后观察剩下因式的特征,如果剩下的因式是二项式,则尝试运用平方差公式;如果剩下的因式是三项式,则尝试运用完全平方公式继续分解.(1)29xyx x(y 2-9)=(3)(3)x yy(2)a2b-2ab2+b3=b(a2-2ab+b2)=b(a-b)2 数不变指数相减例零指数幂的概念任何一个不等于零的数的零指数幂都法则单项式相乘把系数同底数幂分别相乘作为积的因式对于只在一个单例名师总结优秀知识点多项式与多项式的乘法法则多项式与多项式相乘名师总结 优秀知识点 说明:分解因式,必须进行到每一个多项式因式都不能再分解为止.数不变指数相减例零指数幂的概念任何一个不等于零的数的零指数幂都法则单项式相乘把系数同底数幂分别相乘作为积的因式对于只在一个单例名师总结优秀知识点多项式与多项式的乘法法则多项式与多项式相乘
限制150内