2023年中考数学专题复习十圆试卷最新版浙教版.pdf
《2023年中考数学专题复习十圆试卷最新版浙教版.pdf》由会员分享,可在线阅读,更多相关《2023年中考数学专题复习十圆试卷最新版浙教版.pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019-2020 年中考数学专题复习十圆试题浙教版 一.教学目标(1)掌握圆的有关概念和计算 知道圆由圆心与半径确定,了解圆的对称性 通过图形直观识别圆的弦、弧、圆心角等基本元素 利用圆的对称性探索弧、弦、圆心角之间的关系,并会进行简单计算和说理 探索并了解圆周角与圆心角的关系、直径所对圆周角的特征 掌握垂径定理及其推论,并能进行计算和说理 了解三角形外心、三角形外接圆和圆内接三角形的概念 掌握圆内接四边形的性质(2)点与圆的位置关系 能根据点到圆心的距离和半径的大小关系确定点与圆的位置关系 知道“不在同一直线上的三个点确定一个圆”并会作图(3)直线与圆的位置关系 能根据圆心到直线的距离和半
2、径的大小关系确定直线与圆的位置关系 了解切线的概念 能运用切线的性质进行简单计算和说理 掌握切线的识别方法 了解三角形内心、三角形内切圆和圆的外切三角形的概念 能过圆上一点画圆的切线并能利用切线长定理进行简单的切线计算(4)圆与圆的位置关系 了解圆与圆的五种位置关系及相应的数量关系 能根据两圆的圆心距与两圆的半径之间的数量关系判定两圆的位置关系 掌握两圆公切线的定义并能进行简单计算(5)圆中的计算问题 掌握弧长的计算公式,由弧长、半径、圆心角中已知两个量求第三个量 掌握求扇形面积的两个计算公式,并灵活运用 了解圆锥的高、母线等概念 结合生活中的实例(模型)了解圆柱、圆锥的侧面展开图 会求圆柱、
3、圆锥的侧面积、全面积,并能结合实际问题加以应用 能综合运用基本图形的面积公式求阴影部分面积 二.教学难点与重点:与圆的性质有关的计算、开放题以及与圆和多边形结合的探索题是本单元的重点也是难点 三.知识要点:知识点 1:知识点之间的关系 教学准备 圆 切线长 切线 圆与圆的位置关系圆的切线 直线与圆的 位置关系 点与圆的位置关系 垂径定理及其推论 圆周角、同弧上圆周角的关系 弧、弦与圆心角 与圆有关的位置关系 圆的基本性质 圆的对称性 两圆公切线 与圆有关的计算 弧长和扇形的面积 圆锥的侧面积和全面积 知识点 2:圆的有关性质和计算 弧、弦、圆心角之间的关系:在同圆或等圆中,如果两条劣弧(优弧)
4、、两个圆心角中有一组量对应相等,那么它们所对应的其余各组量也分别对应相等 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧 垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半 圆内接四边形的性质:圆的内接四边形对角互补,并且任何一个外角等于它的内对角 知识点 3:点与圆的位置关系 设点与圆心的距离为,圆的半径为,则点在圆外;点在圆上;点在圆内 过不在同一直线上的三点有且只有一个圆 一
5、个三角形有且只有一个外接圆 三角形的外心是三角形三边垂直平分线的交点 三角形的外心到三角形的三个顶点的距离相等 知识点 4:直线与圆的位置关系 设圆心到直线的距离为,圆的半径为,则直线与圆相离;直线与圆相切;直线与圆相交 切线的性质:与圆只有一个公共点;圆心到切线的距离等于半径;圆的切线垂直于过切点的半径 切线的识别:如果一条直线与圆只有一个公共点,那么这条直线是圆的切线 到圆心的距离等于半径的直线是圆的切线 经过半径的外端且垂直于这条半径的直线是圆的切线 三角形的内心是三角形三条内角平分线的交点 三角形的内心到三角形三边的距离相等 计算和说理探索并了解圆周角与圆心角的关系直径所对圆周角的特征
6、掌握垂径定理及其推论并能进行计算和说理了解离和半径的大小关系确定点与圆的位置关系知道不在同一直线上的三个点确定一个圆并会作图直线与圆的位置关系能算和说理掌握切线的识别方法了解三角形内心三角形内切圆和圆的外切三角形的概念能过圆上一点画圆的切线并能利切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等 这一点和圆心的连线平分这两条切线的夹角 知识点 5:圆与圆的位置关系 圆与圆的位置关系有五种:外离、外切、相交、内切、内含 设两圆心的距离为,两圆的半径为,则两圆外离 两圆外切 两圆相交 两圆内切 两圆内含 两个圆构成轴对称图形,连
7、心线(经过两圆圆心的直线)是对称轴 由对称性知:两圆相切,连心线经过切点两圆相交,连心线垂直平分公共弦 两圆公切线的定义:和两个圆都相切的直线叫做两圆的公切线 两个圆在公切线同旁时,这样的公切线叫做外公切线 两个圆在公切线两旁时,这样的公切线叫做内公切线 公切线上两个切点的距离叫做公切线的长 知识点 6:与圆有关的计算 弧长公式:扇形面积公式:(其中为圆心角的度数,为半径)圆柱的侧面展开图是矩形 圆柱体也可以看成是一个矩形以矩形的一边为轴旋转而形成的几何体 圆柱的侧面积底面周长高 圆柱的全面积侧面积2底面积 圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长
8、圆锥体可以看成是由一个直角三角形以一条直角边为轴旋转而成的几何体 圆锥的侧面积底面周长母线;圆锥的全面积侧面积底面积 例 1.ABC中,AC6,BC8,C90,以点C为圆心,CA为半径的圆与AB交于点D,求AD的长【分析】圆中有关弦的计算问题通常利用垂径定理构造直角三角形求解,所以作CHAB,这只要求出AH的长就能得出AD的长 【解】作CHAB,垂足为H C90,AC6,BC8 AB10 C90,CHAB 又AC6,AB10 AH3.6 CHAB AD2AH AD7.2 答:AD的长为 7.2.【说明】解决与弦有关的问题,往往需要构造垂径定理的基本图形由半径、弦心距、弦的一半构成的直角三角形,
9、它是解决此类问题的关键定理的应用必须与所对应的基本图形相结合,同学们在复习时要特别注重基本图形的掌握 例题精讲 计算和说理探索并了解圆周角与圆心角的关系直径所对圆周角的特征掌握垂径定理及其推论并能进行计算和说理了解离和半径的大小关系确定点与圆的位置关系知道不在同一直线上的三个点确定一个圆并会作图直线与圆的位置关系能算和说理掌握切线的识别方法了解三角形内心三角形内切圆和圆的外切三角形的概念能过圆上一点画圆的切线并能利 例 2.(1)如图,ABC内接于O,AB为直径,CAEB,试说明AE与O相切于点A(2)在(1)中,若AB为非直径的弦,CAEB,AE还与O相切于点A吗?请说明理由 【分析】第(1
10、)小题中,因为AB为直径,只要再说明BAE为直角即可第(2)小题中,AB为非直径的弦,但可以转化为第(1)小题的情形【解】(1)AB是O的直径 C90 BACB90 又CAEB BACCAE 90 即BAE 90 AE与O相切于点A.(2)连结AO并延长交O于D,连结CD.AD是O的直径 ACD90 DCAD90 又DB BCAD90 又CAE B CAECAD90 即EAD 90 AE仍然与O相切于点A.【说明】本题主要考查切线的识别方法渗透了“由特殊到一般”的数学思想方法,这对于学生的探索能力的培养非常重要 例 3.如图,已知O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD
11、5(1)若,求CD的长(2)若ADO:EDO4:1,求扇形OAC(阴影部分)的面积(结果保留)【分析】图形中有“直径对直角”,这样就出现了“直角三角形及斜边上的高”的基本图形,求CD的长就转化为求DE的长第(2)小题求扇形OAC的面积其关键是求AOD的度数,从而转化为求AOD的大小 【解】(1)AB是O的直径,OD5 ADB90,AB10 又在RtABD中,ADB90,ABCD BD2BEAB AB10 BE 计算和说理探索并了解圆周角与圆心角的关系直径所对圆周角的特征掌握垂径定理及其推论并能进行计算和说理了解离和半径的大小关系确定点与圆的位置关系知道不在同一直线上的三个点确定一个圆并会作图直
12、线与圆的位置关系能算和说理掌握切线的识别方法了解三角形内心三角形内切圆和圆的外切三角形的概念能过圆上一点画圆的切线并能利在RtEBD中,由勾股定理得 答:CD的长为(2)AB是O的直径,ABCD BADCDB,AOCAOD AODO BADADO CDBADO 设ADO4k,则CDB4k ADOEDOEDB90 得k10 AOD180(OADADO)100 AOCAOD100 则SOAC扇形 1003605125182 答:扇形OAC的面积为【说明】本题涉及到了圆中的重要定理、直角三角形的边角关系、扇形面积公式等知识点的综合,考查了学生对基本图形、基本定理的掌握程度求DE长的方法很多,可以用射
13、影定理、勾股定理,也可以运用面积关系来求,但都离不开“直角三角形及斜边上的高”这个基本图形解题中也运用了比例问题中的设k法,同时也渗透了“转化”的思想方法 例 4.半径为 2.5 的O中,直径AB的不同侧有定点C和动点P已知BC:CA4:3,点P在半圆AB上运动(不与A、B两点重合),过点C作CP的垂线,与PB的延长线交于点Q.(1)当点P与点C关于AB对称时,求CQ的长;(2)当点P运动到半圆AB的中点时,求CQ的长;(3)当点P运动到什么位置时,CQ取到最大值?求此时CQ的长【分析】当点P与点C关于AB对称时,CP被直径垂直平分,由垂径定理求出CP的长,再由RtACBRtPCQ,可求得CQ
14、的长当点P在半圆AB上运动时,虽然P、Q 点的位置在变,但PCQ始终与ACB相似,点P运动到半圆AB的中点时,PCB45,作BEPC于点E,CPPEEC.由于CP与CQ的比值不变,所以CP取得最大值时CQ也最大 【解】(1)当点P与点C关于AB对称时,CPAB,设垂足为D AB为O的直径,ACB90 AB5,AC:CA4:3 BC4,AC3 SRtACBACBCABCD 在RtACB和RtPCQ中,ACBPCQ90,CABCPQ RtACBRtPCQ 53234PCACPCBCCQ(2)当点P运动到弧AB的中点时,过点B作BEPC于点E(如图)计算和说理探索并了解圆周角与圆心角的关系直径所对圆
15、周角的特征掌握垂径定理及其推论并能进行计算和说理了解离和半径的大小关系确定点与圆的位置关系知道不在同一直线上的三个点确定一个圆并会作图直线与圆的位置关系能算和说理掌握切线的识别方法了解三角形内心三角形内切圆和圆的外切三角形的概念能过圆上一点画圆的切线并能利 P是弧AB的中点,又CPBCAB CPB tanCAB 33 2,tan42BEPEBECPB 从而 由(1)得,(3)点P在弧AB上运动时,恒有 故PC最大时,CQ取到最大值 当PC过圆心O,即PC取最大值 5 时,CQ 最大值为【说明】本题从点P在半圆AB上运动时的两个特殊位置的计算问题引申到求CQ的最大值,一方面渗透了“由特殊到一般”
16、的思想方法,另一方面运用“运动变化”的观点解决问题时,寻求变化中的不变性(题中的RtACBRtPCQ)往往是解题的关键 例 5.如图,PA,PB是O的切线,A,B为切点,OAB 30 (1)求APB的度数;(2)当 OA 3 时,求 AP的长 【点评】本题用到的知识点较多,主要知识点有:圆的切线的性质;等腰三角形的性质;四边形内角和定理;垂径定理;锐角三角函数等【解】(1)在ABO中,OA OB,OAB 30,AOB 180230120,PA、PB是O的切线,OA PA,OB PB,即OAP OBP 90 AOB+APB=180 APB=6 0 (2)如图,作 OD AB交 AB于点 D,在O
17、AB中,OA OB,AD AB,在 RtAOD 中,OA 3,OAD 30,AD OAcos30,AP AB 3 计算和说理探索并了解圆周角与圆心角的关系直径所对圆周角的特征掌握垂径定理及其推论并能进行计算和说理了解离和半径的大小关系确定点与圆的位置关系知道不在同一直线上的三个点确定一个圆并会作图直线与圆的位置关系能算和说理掌握切线的识别方法了解三角形内心三角形内切圆和圆的外切三角形的概念能过圆上一点画圆的切线并能利 例 6.如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径 AB 12cm,高 BC 8cm,求这
18、个零件的表面积(结果保留根号)【解】这个零件的底面积()236cm2 这个零件的外侧面积12896cm2 圆锥母线长 OC 10cm 这个零件的内侧面积121060cm2,这个零件的表面积为:369660192cm2 例 7.如图,O是圆柱形木块底面的圆心,过底面的一条弦 AD,沿母线 AB剖开,得剖面矩形 ABCD,AD 24cm,AB 25cm,若 AmD 的长为底面周长的,如图所示:(1)求O的半径;(2)求这个圆柱形木块的表面积(结果可保留根号)【解】(1)连结 OA、OD,作 OE AD于 E,易知AOD 120,AE 12cm,可得 AO r8cm (2)圆柱形木块的表面积2S圆S
19、圆柱侧(384400)cm2 例 8.在图 1 和图 2 中,已知 OA OB,AB 24,O的直径为 10.(1)如图 1,AB与O相切于点 C,试求 OA的值;(2)如图 2,若 AB与O相交于 D、E两点,且 D、E均为 AB的三等分点,试求 tanA 的值 (1)【解】连结 OC,AB与O相切于 C点,OCA 90,OA OB,AC BC 12 在 Rt ACO中,OA 2222125ACOC13 (2)作 OF AB于点 F,连结 OD,DF EF;AF AD DF 8412,在 Rt ODF中,OF 3,计算和说理探索并了解圆周角与圆心角的关系直径所对圆周角的特征掌握垂径定理及其推
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年中 数学 专题 复习 试卷 最新版 浙教版
限制150内