2023年平面向量精品讲义.pdf
《2023年平面向量精品讲义.pdf》由会员分享,可在线阅读,更多相关《2023年平面向量精品讲义.pdf(36页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 第二章 平面向量 2.1.1 平面向量的实际背景及基本概念 2.1.2 向量的几何表示 教学目标:1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.教学思路:一、情景设置:如图,老
2、鼠由 A向西北逃窜,猫在 B处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线 AC、猫追逐的路线 BD实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习:A B C D 学习必备 欢迎下载 (一)向量的概念:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:1、数量与向量有何区别?2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为 1 的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6
3、、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点 O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?(三)探究学习 1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:用有向线段表示;用字母、:(黑体,印刷用)等表示;用有向线段的起点与终点字母:AB;向量AB的大小长度称为向量的模,记作|AB|.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、A(起点)B(终点)a 行向量相等向量和共线向量通过对向量的学习使学生初步认识现实生活量共线
4、向量的概念会表示向量教学难点平行向量相等向量和共线向量的逐的路线实际上都是有方向有长短的量引言请同学指出哪些量既有大小学习必备 欢迎下载 长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:长度为 0 的向量叫零向量,记作0.0的方向是任意的.注意0与 0 的含义与书写区别.长度为 1 个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:方向相同或相反的非零向量叫平行
5、向量;我们规定0与任一向量平行.说明:(1)综合、才是平行向量的完整定义;(2)向量、平行,记作。6、巩固练习:P77 练习 1、2、3 习题 A 1 行向量相等向量和共线向量通过对向量的学习使学生初步认识现实生活量共线向量的概念会表示向量教学难点平行向量相等向量和共线向量的逐的路线实际上都是有方向有长短的量引言请同学指出哪些量既有大小学习必备 欢迎下载 2.1.3 相等向量和共线向量 1、相等向量定义:长度相等且方向相同的向量叫相等向量。说明:(1)向量与相等,记作;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.2、共线向量与平
6、行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.(四)理解和巩固:例 1 书本 76 页例 2 例 2 判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等的当且仅当什么?(长度相等且
7、方向相同)(7)共线向量一定在同一直线上吗?(不一定)例 3 如图,设 O是正六边形 ABCDEF 的中心,分别写出图中与向量OA、OB、行向量相等向量和共线向量通过对向量的学习使学生初步认识现实生活量共线向量的概念会表示向量教学难点平行向量相等向量和共线向量的逐的路线实际上都是有方向有长短的量引言请同学指出哪些量既有大小学习必备 欢迎下载 OC相等的向量.变式一:与向量长度相等的向量有多少个?(11 个)变式二:是否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?(FEDOCB,)课堂练习:1判断下列命题是否正确,若不正确,请简述理由 向量AB与CD是共线向量,则
8、A、B、C、D四点必在一直线上;单位向量都相等;任一向量与它的相反向量不相等;四边形ABCD是平行四边形当且仅当ABDC 一个向量方向不确定当且仅当模为 0;共线的向量,若起点不同,则终点一定不同.2书本 77 页练习 三、课后作业:书本 77 页习题 2.1 第 2、3、5 题 行向量相等向量和共线向量通过对向量的学习使学生初步认识现实生活量共线向量的概念会表示向量教学难点平行向量相等向量和共线向量的逐的路线实际上都是有方向有长短的量引言请同学指出哪些量既有大小学习必备 欢迎下载 第 2 课时 2.2.1 向量的加法运算及其几何意义 教学目标:1、掌握向量的加法运算,并理解其几何意义;2、会
9、用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.教学难点:理解向量加法的定义.教学思路:一、设置情景:1、复习:向量的定义以及有关概念 强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置 2、情景设置:(1)某人从 A到 B,再从 B按原方向到 C
10、,则两次的位移和:ACBCAB(2)若上题改为从 A到 B,再从 B按反方向到 C,则两次的位移和:ACBCAB(3)某车从 A到 B,再从 B改变方向到 C,则两次的位移和:ACBCAB A B C C A B A B C 行向量相等向量和共线向量通过对向量的学习使学生初步认识现实生活量共线向量的概念会表示向量教学难点平行向量相等向量和共线向量的逐的路线实际上都是有方向有长短的量引言请同学指出哪些量既有大小学习必备 欢迎下载 O A B a a a b b b(4)船速为AB,水速为BC,则两速度和:ACBCAB 二、探索研究:、向量的加法:求两个向量和的运算,叫做向量的加法.、三角形法则(
11、“首尾相接,首尾连”)如图,已知向量 a、.在平面内任取一点A,作ABa,BC,则向量AC叫做 a 与的和,记作 a,即 aACBCAB,规定:a+0=0+a 探究:(1)两相向量的和仍是一个向量;(2)当向量a与b不共线时,a+b的方向不同向,且|a+b|b|,则a+b的方向与a相同,且|a+b|=|a|-|b|;若|a|0 时a与a方向相同;0,(a)b=|a|b|cos ,(ab)=|a|b|cos ,a(b)=|a|b|cos ,若 0,(a)b=|a|b|cos()=|a|b|(cos )=|a|b|cos ,(ab)=|a|b|cos ,a(b)=|a|b|cos()=|a|b|(
12、cos )=|a|b|cos .行向量相等向量和共线向量通过对向量的学习使学生初步认识现实生活量共线向量的概念会表示向量教学难点平行向量相等向量和共线向量的逐的路线实际上都是有方向有长短的量引言请同学指出哪些量既有大小学习必备 欢迎下载 3分配律:(a+b)c=a c+bc 在平面内取一点O,作OA=a,AB=b,OC=c,a+b(即OB)在c方向上的投影等于a、b在c方向上的投影和,即|a+b|cos =|a|cos 1+|b|cos 2|c|a+b|cos =|c|a|cos 1+|c|b|cos 2,c(a+b)=ca+cb 即:(a+b)c=ac+bc 说明:(1)一般地,()()(2
13、),0(3)有如下常用性质:,()()()三、讲解范例:例 1 已知a、b都是非零向量,且a+3b与 7a 5b垂直,a 4b与 7a 2b垂直,求a与b的夹角.解:由(a+3b)(7a 5b)=0 7a2+16ab 15b2=0 (a 4b)(7a 2b)=0 7a2 30ab+8b2=0 两式相减:2ab=b2 代入或得:a2=b2 设a、b的夹角为,则 cos =21222|bbbaba =60 行向量相等向量和共线向量通过对向量的学习使学生初步认识现实生活量共线向量的概念会表示向量教学难点平行向量相等向量和共线向量的逐的路线实际上都是有方向有长短的量引言请同学指出哪些量既有大小学习必备
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 平面 向量 精品 讲义
限制150内