人教版六年级上册数学知识点整理汇编.doc
《人教版六年级上册数学知识点整理汇编.doc》由会员分享,可在线阅读,更多相关《人教版六年级上册数学知识点整理汇编.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、六年级上册数学知识点班 级:_姓 名:_第一单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。例如: 5表示求5个的和是多少?2、分数乘分数是求一个数的几分之几是多少。 例如: 表示求的是多少?(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。3、为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积
2、大于这个数。 一个数(0除外)乘小于1的数(0除外),积小于这个数。一个数(0除外)乘1,积等于这个数。(四)、分数混合运算的运算顺序和整数的运算顺序相同。(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律: a b = b a 乘法结合律: ( a b )c = a ( b c )乘法分配律: ( a + b )c = a c + b c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是
3、”、“比”的后面3、求一个数的几倍: 一个数几倍; 求一个数的几分之几是多少: 一个数。4、写数量关系式技巧: (1)“的” 相当于 “” “占”、“是”、“比”相当于“ = ”(2)分率前是“的”: 单位“1”的量分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量(1分率)=分率对应量第二单元 位置与方向一、确定物体位置的方法:1、先找方向。以“偏”字左面的字所在的线为0刻度线,坐标的中心为顶点,量取需要的度数画出一个角。2、再定距离:看已知的长度里面有多少个比例尺代表的数量,画出多少段。即“已知长度比例尺代表的数量=段数”。3、标出角度和地点名称,地点名称就是“在”字左面的地
4、点。二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。 三、位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。 四、相对位置:东-西;南-北;东偏南-西偏北。第三单元 分数除法一、倒数1、倒数的意义: 乘积是1的两个数互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的
5、倒数: 把小数化为分数,再求倒数。3、1的倒数是1; 0没有倒数。 因为11=1;0乘任何数都得0,(分母不能为0)4、 对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是; 5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。二、分数除法1、分数除法的意义:乘法: 因数 因数 = 积 除法: 积 一个因数 = 另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。3、 规律(分数除法比较大小时): (1)、当除数大于1,商小于被除数; (2)、当除数小于1(不等
6、于0),商大于被除数; (3)、当除数等于1,商等于被除数。4、 “”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。二、分数除法解决问题(未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。 )1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”: 单位“1”的量分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量(1分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X,用方程解答。(2)算术(用除法): 分率对应量对应分率 = 单位“1”的量 3、求
7、一个数是另一个数的几分之几:就 一个数另一个数4、求一个数比另一个数多(少)几分之几: 两个数的相差量单位“1”的量 或: 求多几分之几:大数小数 1 求少几分之几: 1 - 小数大数第四单元 比一、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如 15 :10 = 1510= (比值通常用分数表示,也可以用小数或整数表示) 前项 比号 后项 比值3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程速度=时间。4、区分比
8、和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。5、根据分数与除法的关系,两个数的比也可以写成分数形式。6、比和除法、分数的联系: 比前 项比号“:”后 项比值除 法被除数除号“”除 数商分 数分 子分数线“”分 母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。8、根据比与除法、分数的关系,可以理解比的后项不能为0。 体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相
9、同的数(0除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。3、根据比的基本性质,可以把比化成最简单的整数比。依据比的基本性质:4.化简比: 用比的前项和后项同时除以它们的最大公因数。(1) 两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。两个小数的比:向右移动小数点的位置,先化成整数比再化简。(2)用求比值的方法。注意: 最后结果要写成比的形式。如: 1510 = 1510
10、= = 325按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。如: 已知两个量之比为,则设这两个量分别为。6、 路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4) 工作总量一定,工作效率和工作时间成反比。(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)第五单元 圆一、 认识圆1、圆的定义:圆是由曲线围成的一种平面图形。2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之
11、间的距离就是圆的半径。4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。5、圆心确定圆的位置,半径确定圆的大小。6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。7在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。用字母表示为:d2r或r 8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。只有2
12、条对称轴的图形是: 长方形只有3条对称轴的图形是: 等边三角形只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。发现一般规律,就是圆周长与它直径的比值是一个固定数()。3圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母(pai) 表示。(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。圆周率是一个无限不循环小数。在计算时,一般取 3.14。(2)、在判断时,圆周长与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 六年级 上册 数学 知识点 整理 汇编
限制150内