高等数学》同济六版教学课件第9章多元函数微分法及其应用.ppt
《高等数学》同济六版教学课件第9章多元函数微分法及其应用.ppt》由会员分享,可在线阅读,更多相关《高等数学》同济六版教学课件第9章多元函数微分法及其应用.ppt(125页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六节复习 目录 上页 下页 返回 结束 一、空间曲线的切线与法平面一、空间曲线的切线与法平面二、曲面的切平面与法线二、曲面的切平面与法线 多元函数微分学的几何应用 第九章 复习复习:平面曲线的切线与法线已知平面光滑曲线切线方程法线方程若平面光滑曲线方程为故在点切线方程法线方程在点有有因 机动 目录 上页 下页 返回 结束 一、一、空间曲线的切线与法平面空间曲线的切线与法平面过点 M 与切线垂直的平面称为曲线在该点的法法机动 目录 上页 下页 返回 结束 位置.空间光滑曲线在点 M 处的切线切线为此点处割线的极限平面平面.点击图中任意点动画开始或暂停1.曲线方程为参数方程的情况曲线方程为参数方
2、程的情况切线方程切线方程机动 目录 上页 下页 返回 结束 此处要求也是法平面的法向量,切线的方向向量:称为曲线的切向量切向量.如个别为0,则理解为分子为 0.机动 目录 上页 下页 返回 结束 不全为0,因此得法平面方程法平面方程 说明说明:若引进向量函数,则 为 r(t)的矢端曲线,处的导向量 就是该点的切向量.例例1.求圆柱螺旋线 对应点处的切线方程和法平面方程.切线方程法平面方程即即解解:由于对应的切向量为在机动 目录 上页 下页 返回 结束,故2.曲线为一般式的情况曲线为一般式的情况光滑曲线当曲线上一点,且有时,可表示为处的切向量为 机动 目录 上页 下页 返回 结束 则在点切线方程
3、切线方程法平面方程法平面方程有或机动 目录 上页 下页 返回 结束 也可表为法平面方程法平面方程机动 目录 上页 下页 返回 结束 例例2.求曲线在点M(1,2,1)处的切线方程与法平面方程.切线方程解法解法1 令则即切向量机动 目录 上页 下页 返回 结束 法平面方程即机动 目录 上页 下页 返回 结束 解法解法2.方程组两边对 x 求导,得曲线在点 M(1,2,1)处有:切向量解得切线方程即法平面方程即点 M(1,2,1)处的切向量机动 目录 上页 下页 返回 结束 二、二、曲面的切平面与法线曲面的切平面与法线 设 有光滑曲面通过其上定点对应点 M,切线方程为不全为0.则 在且点 M 的切
4、向量切向量为任意引一条光滑曲线下面证明:此平面称为 在该点的切平面切平面.机动 目录 上页 下页 返回 结束 上过点 M 的任何曲线在该点的切线都在同一平面上.证:机动 目录 上页 下页 返回 结束 在 上,得令由于曲线 的任意性,表明这些切线都在以为法向量的平面上,从而切平面存在.曲面 在点 M 的法向量法向量法线方程法线方程切平面方程切平面方程复习 目录 上页 下页 返回 结束 曲面时,则在点故当函数 法线方程法线方程令特别特别,当光滑曲面 的方程为显式 在点有连续偏导数时,切平面方程切平面方程机动 目录 上页 下页 返回 结束 法向量法向量用将法向量的法向量的方向余弦:方向余弦:表示法向
5、量的方向角,并假定法向量方向分别记为则向上,复习 目录 上页 下页 返回 结束 例例3.求球面在点(1,2,3)处的切平面及法线方程.解解:所以球面在点(1,2,3)处有:切平面方程切平面方程 即法线方程法线方程法向量令机动 目录 上页 下页 返回 结束 例例4.确定正数 使曲面在点解解:二曲面在 M 点的法向量分别为二曲面在点 M 相切,故又点 M 在球面上,于是有相切.与球面机动 目录 上页 下页 返回 结束,因此有1.空间曲线的切线与法平面空间曲线的切线与法平面 切线方程法平面方程1)参数式情况.空间光滑曲线切向量内容小结内容小结机动 目录 上页 下页 返回 结束 切线方程法平面方程空间
6、光滑曲线切向量2)一般式情况.机动 目录 上页 下页 返回 结束 空间光滑曲面曲面 在点法线方程法线方程1)隐式情况.的法向量法向量切平面方程切平面方程2.曲面的切平面与法线曲面的切平面与法线机动 目录 上页 下页 返回 结束 空间光滑曲面切平面方程切平面方程法线方程法线方程2)显式情况.法线的方向余弦方向余弦法向量法向量机动 目录 上页 下页 返回 结束 思考与练习思考与练习1.如果平面与椭球面相切,提示提示:设切点为则机动 目录 上页 下页 返回 结束(二法向量平行)(切点在平面上)(切点在椭球面上)证明 曲面上任一点处的切平面都通过原点.提示提示:在曲面上任意取一点则通过此2.设 f(u
7、)可微,第七节 目录 上页 下页 返回 结束 证明原点坐标满足上述方程.点的切平面为 1.证明曲面与定直线平行,证证:曲面上任一点的法向量取定直线的方向向量为则(定向量)故结论成立.的所有切平面恒备用题备用题机动 目录 上页 下页 返回 结束 2.求曲线在点(1,1,1)的切线解解:点(1,1,1)处两曲面的法向量为因此切线的方向向量为由此得切线:法平面:即与法平面.机动 目录 上页 下页 返回 结束 第九章 第七节第七节一、方向导数一、方向导数 机动 目录 上页 下页 返回 结束 二、梯度二、梯度 三、物理意义三、物理意义 方向导数与梯度方向导数与梯度一、方向导数一、方向导数定义定义:若函数
8、则称为函数在点 P 处沿方向 l 的方向导数方向导数.在点 处沿方向 l(方向角为)存在下列极限:机动 目录 上页 下页 返回 结束 记作记作 定理定理:则函数在该点沿任意方向沿任意方向 l 的方向导数存在,证明证明:由函数且有在点 P 可微,得机动 目录 上页 下页 返回 结束 故机动 目录 上页 下页 返回 结束 对于二元函数为,)的方向导数为特别特别:当 l 与 x 轴同向 当 l 与 x 轴反向向角例例1.求函数 在点 P(1,1,1)沿向量3)的方向导数.机动 目录 上页 下页 返回 结束 解解:向量 l 的方向余弦为例例2.求函数 在点P(2,3)沿曲线朝 x 增大方向的方向导数.
9、解解:将已知曲线用参数方程表示为它在点 P 的切向量为机动 目录 上页 下页 返回 结束 例例3.设是曲面在点 P(1,1,1)处指向外侧的法向量,解解:方向余弦为而同理得方向的方向导数.在点P 处沿求函数机动 目录 上页 下页 返回 结束 二、梯度二、梯度 方向导数公式令向量这说明方向:f 变化率最大的方向模:f 的最大变化率之值方向导数取最大值:机动 目录 上页 下页 返回 结束 1.定义定义即同样可定义二元函数称为函数 f(P)在点 P 处的梯度记作(gradient),在点处的梯度 机动 目录 上页 下页 返回 结束 说明说明:函数的方向导数为梯度在该方向上的投影.向量2.梯度的几何意
10、义梯度的几何意义函数在一点的梯度垂直于该点等值面(或等值线),机动 目录 上页 下页 返回 结束 称为函数 f 的等值线等值线.则L*上点P 处的法向量为 同样,对应函数有等值面(等量面)当各偏导数不同时为零时,其上 点P处的法向量为指向函数增大的方向.3.梯度的基本运算公式梯度的基本运算公式机动 目录 上页 下页 返回 结束 例例4.证证:试证机动 目录 上页 下页 返回 结束 处矢径 r 的模,三、物理意义三、物理意义函数(物理量的分布)数量场数量场(数性函数)场向量场向量场(矢性函数)可微函数梯度场梯度场(势)如:温度场,电位场等如:力场,速度场等(向量场)注意注意:任意一个向量场不一定
11、是梯度场.机动 目录 上页 下页 返回 结束 例例5.已知位于坐标原点的点电荷 q 在任意点试证证证:利用例4的结果 这说明场强:处所产生的电位为垂直于等位面,且指向电位减少的方向.机动 目录 上页 下页 返回 结束 内容小结内容小结1.方向导数方向导数 三元函数 在点沿方向 l(方向角的方向导数为 二元函数 在点的方向导数为沿方向 l(方向角为机动 目录 上页 下页 返回 结束 2.梯度梯度 三元函数 在点处的梯度为 二元函数 在点处的梯度为3.关系关系方向导数存在偏导数存在 可微机动 目录 上页 下页 返回 结束 梯度在方向 l 上的投影.思考与练习思考与练习1.设函数(1)求函数在点 M
12、(1,1,1)处沿曲线在该点切线方向的方向导数;(2)求函数在 M(1,1,1)处的梯度梯度与(1)中切线方切线方向向 的夹角 .机动 目录 上页 下页 返回 结束 曲线1.(1)在点解答提示解答提示:机动 目录 上页 下页 返回 结束 函数沿 l 的方向导数M(1,1,1)处切线的方向向量机动 目录 上页 下页 返回 结束 备用题备用题 1.函数在点处的梯度解解:则注意 x,y,z 具有轮换对称性(92考研考研)机动 目录 上页 下页 返回 结束 指向 B(3,2,2)方向的方向导数是 .在点A(1,0,1)处沿点A2.函数提示提示:则(96考研考研)机动 目录 上页 下页 返回 结束 第九
13、章 第八节第八节一、多元函数的极值一、多元函数的极值 二、最值应用问题二、最值应用问题三、条件极值三、条件极值机动 目录 上页 下页 返回 结束 多元函数的极值及其求法多元函数的极值及其求法一、一、多元函数的极值多元函数的极值 定义定义:若函数则称函数在该点取得极大值(极小值).例如例如:在点(0,0)有极小值;在点(0,0)有极大值;在点(0,0)无极值.极大值和极小值统称为极值,使函数取得极值的点称为极值点.的某邻域内有机动 目录 上页 下页 返回 结束 说明说明:使偏导数都为 0 的点称为驻点.例如,定理定理1(必要条件)函数偏导数,证证:据一元函数极值的必要条件可知定理结论成立.取得极
14、值,取得极值取得极值 但驻点不一定是极值点.有驻点(0,0),但在该点不取极值.且在该点取得极值,则有存在故机动 目录 上页 下页 返回 结束 时,具有极值定理定理2(充分条件)的某邻域内具有一阶和二阶连续偏导数,且令则:1)当A0 时取极小值.2)当3)当时,没有极值.时,不能确定,需另行讨论.若函数机动 目录 上页 下页 返回 结束 例例1.1.求函数解解:第一步第一步 求驻点求驻点.得驻点:(1,0),(1,2),(3,0),(3,2).第二步第二步 判别判别.在点(1,0)处为极小值;解方程组的极值.求二阶偏导数机动 目录 上页 下页 返回 结束 在点(3,0)处不是极值;在点(3,2
15、)处为极大值.在点(1,2)处不是极值;机动 目录 上页 下页 返回 结束 例例2.讨论函数及是否取得极值.解解:显然(0,0)都是它们的驻点,在(0,0)点邻域内的取值,因此 z(0,0)不是极值.因此为极小值.正正负负0在点(0,0)并且在(0,0)都有 可能为机动 目录 上页 下页 返回 结束 二、最值应用问题二、最值应用问题函数 f 在闭域上连续函数 f 在闭域上可达到最值 最值可疑点 驻点边界上的最值点特别特别,当区域内部最值存在,且只有一个只有一个极值点P 时,为极小 值为最小 值(大大)(大大)依据机动 目录 上页 下页 返回 结束 例例3 3.解解:设水箱长,宽分别为 x,y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学 同济 教学 课件 多元 函数 微分 及其 应用
限制150内