数字图像处理_第二版中文版(冈萨雷斯)习题答案.pdf
《数字图像处理_第二版中文版(冈萨雷斯)习题答案.pdf》由会员分享,可在线阅读,更多相关《数字图像处理_第二版中文版(冈萨雷斯)习题答案.pdf(91页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数字图像处理第二版中文版冈萨雷斯习题答案Digital Image ProcessingSecond EditionProblem SolutionsStudent SetRafael C.GonzalezRichard E.WoodsPrentice HallUpper Saddle River,NJ history10 9 8 7 6 5 4 3 2 1Copyright c 1992-2002 by Rafael C.Gonzalez and Richard E.Woods1PrefaceThis abbreviated manual contains detailed solution
2、s to all problems marked with a starin Digital Image Processing,2nd Edition.These solutions can also bedownloaded fromthe book web site().2Solutions(Students)Problem 2.1The diameter,x,of the retinal image corresponding to the dot is obtained from similartriangles,as shown in Fig.P2.1.That is,(d=2)0:
3、2=(x=2)0:014which gives x=0:07d.From the discussion in Section 2.1.1,and taking some libertiesofinterpretation,wecanthinkofthefoveaasasquaresensorarrayhavingontheorderof337,000 elements,which translates into an array of size 580580 elements.Assumingequal spacing between elements,this gives 580 eleme
4、nts and 579 spaces on a line 1.5mm long.The size of each element and each space is then s=(1:5mm)=1;159=1:3106m.If the size(on the fovea)of the imaged dot is less than the size of a singleresolution element,we assume that the dot will be invisible to the eye.In other words,the eye will not detect a
5、dot if its diameter,d,is such that 0:07(d)1:3 106m,ord:0if D(u;v)D0+W2(b)Butterworth bandpass filter:HBbp(u;v)=1 11+hD(u;v)WD2(u;v)D20i2n=hD(u;v)WD2(u;v)D20i2n1+hD(u;v)WD2(u;v)D20i2n:26Chapter 5 Solutions(Students)(c)Gaussian bandpass filter:HGbp(u;v)=1 1 e12D2(u;v)D20D(u;v)W2#=e12D2(u;v)D20D(u;v)W2
6、:Problem 5.14We proceed as follows:F(u;v)=ZZ11f(x;y)ej2(ux+vy)dxdy=ZZ11Asin(u0 x+v0y)ej2(ux+vy)dxdy:Using the exponential definition of the sine function:sin=12jej ejgives usF(u;v)=jA2ZZ11hej(u0 x+v0y)ej(u0 x+v0y)iej2(ux+vy)dxdy=jA2ZZ11ej2(u0 x=2+v0y=2)ej2(ux+vy)dxdyjA2ZZ11ej2(u0 x=2+v0y=2)ej2(ux+vy
7、)dxdy:These are the Fourier transforms of the functions1 ej2(u0 x=2+v0y=2)and1 ej2(u0 x=2+v0y=2)respectively.The Fourier transform of the 1 gives an impulse at the origin,and theexponentials shift the origin of the impulse,as discussed in Section 4.6.1.Thus,F(u;v)=jA2hu u02;v v02u+u02;v+v02i:Problem
8、 5.16From Eq.(5.5-13),g(x;y)=ZZ11f(;)h(x ;y )dd:Problem 5.1827It is given that f(x;y)=(x a);so f(;)=(a):Then,using the impulseresponse given in the problem statement,g(x;y)=ZZ11(a)e(x)2+(y)2dd=ZZ11(a)e(x)2e(y)2dd=Z11(a)e(x)2dZ11e(y)2d=e(xa)2Z11e(y)2dwhere we used the fact that the integral of the im
9、pulse is nonzero only when =a:Next,we note thatZ11e(y)2d=Z11e(y)2dwhich is in the form of a constant times a Gaussian density with variance 2=1=2 orstandard deviation =1=p2.In other words,e(y)2=p2(1=2)1p2(1=2)e(1=2)(y)2(1=2)#:The integral from minus to plus infinity of the quantity inside the bracke
10、ts is 1,sog(x;y)=pe(xa)2which is a blurred version of the original image.Problem 5.18Following the procedure in Section 5.6.3,H(u;v)=ZT0ej2ux0(t)dt=ZT0ej2u(1=2)at2dt=ZT0ejuat2dt=ZT0cos(uat2)j sin(uat2)dt=rT22uaT2C(puaT)jS(puaT)whereC(x)=r2TZx0cost2dt28Chapter 5 Solutions(Students)andS(x)=r2Zx0sint2d
11、t:These are Fresnel cosine and sine integrals.They can be found,for example,the Hand-book of Mathematical Functions,by Abramowitz,or other similar reference.Problem 5.20Measure the average value of the background.Set all pixels in the image,except thecross hairs,to that gray level.Denote the Fourier
12、 transform of this image by G(u;v).Since the characteristics of the cross hairs are given with a high degree of accuracy,we can construct an image of the background(of the same size)using the backgroundgray levels determined previously.We then construct a model of the cross hairs in thecorrect locat
13、ion(determined from he given image)using the provided dimensions andgray level of the crosshairs.Denote by F(u;v)the Fourier transform of this new image.Theratio G(u;v)=F(u;v)is an estimate of the blurring function H(u;v).In thelikelyevent of vanishing values in F(u;v),we can construct a radially-li
14、mited filter using themethod discussed in connection with Fig.5.27.Becausewe know F(u;v)and G(u;v),and an estimate of H(u;v),we can also refine our estimate of the blurring functionby substituting G and H in Eq.(5.8-3)and adjusting K to get as close as possible to agoodresultfor F(u;v)theresultcan b
15、eevaluated visually bytaking theinverseFouriertransform.The resulting filter in either case can then be used to deblur the image of theheart,if desired.Problem 5.22This is a simple plugin problem.Its purpose is to gain familiarity with the various termsof the Wiener filter.From Eq.(5.8-3),HW(u;v)=1H
16、(u;v)jH(u;v)j2jH(u;v)j2+K#wherejH(u;v)j2=H(u;v)H(u;v)=22(u2+v2)2e422(x2+y2):Then,HW(u;v)=p2(u2+v2)e222(x2+y2)22(u2+v2)2e422(x2+y2)+K#:Problem 5.2529Problem 5.25(a)It is given thatF(u;v)2=jR(u;v)j2jG(u;v)j2:From Problem 5.24,F(u;v)2=jR(u;v)j2hjH(u;v)j2jF(u;v)j2+jN(u;v)j2i:ForcingF(u;v)2to equal jF(u;
17、v)j2givesR(u;v)=jF(u;v)j2jH(u;v)j2jF(u;v)j2+jN(u;v)j2#1=2:Problem 5.27The basic idea behind this problem is to use the camera and representative coins tomodel the degradation process and then utilize the results in an inverse filter operation.The principal steps are as follows:1.Select coins as clos
18、e as possible in size and content as the lost coins.Select a back-ground that approximates the texture and brightness of the photos of the lost coins.2.Set up the museum photographic camera in a geometry as close as possible to giveimages that resemble the images of the lost coins(this includes payi
19、ng attention toillumination).Obtain a few test photos.To simplify experimentation,obtain a TVcamera capable of giving images that resemble the test photos.This can be done byconnecting the camera to an image processing system and generating digital images,which will be used in the experiment.3.Obtai
20、n sets of images of each coin with different lens settings.The resulting imagesshould approximate the aspect angle,size(in relation to the area occupied by thebackground),and blur of the photos of the lost coins.4.The lens setting for each image in(3)is a model of the blurring process for thecorresp
21、onding image of a lost coin.For each such setting,remove the coin andbackground and replace them with a small,bright dot on a uniform background,or other mechanism to approximate an impulse of light.Digitize the impulse.ItsFourier transform is the transfer function of the blurring process.5.Digitize
22、 each(blurred)photo of a lost coin,and obtain its Fourier transform.At thispoint,we have H(u;v)and G(u;v)for each coin.6.Obtain an approximation to F(u;v)by using a Wiener filter.Equation(5.8-3)isparticularly attractive because it gives an additional degree of freedom(K)for ex-perimenting.30Chapter
23、5 Solutions(Students)7.Theinverse Fourier transformof each approximateF(u;v)gives the restored image.In general,several experimental passes of these basic steps with various differentsettings and parameters are required to obtain acceptable results in a problem suchas this.6Solutions(Students)Proble
24、m 6.2Denote by c the given color,and let its coordinates be denoted by(x0;y0).The distancebetween c and c1isd(c;c1)=h(x0 x1)2+(y0y1)2i1=2:Similarly the distance between c1and c2d(c1;c2)=h(x1x2)2+(y1 y2)2i1=2:The percentage p1of c1in c isp1=d(c1;c2)d(c;c1)d(c1;c2)100:The percentage p2of c2is simply p
25、2=100 p1.In the preceding equation we see,for example,that when c=c1,then d(c;c1)=0 and it follows that p1=100%and p2=0%.Similarly,when d(c;c1)=d(c1;c2);it follows that p1=0%andp2=100%.Values in between are easily seen to follow from these simple relations.Problem 6.4Use color filters sharply tuned
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字图像 处理 第二 中文版 冈萨雷斯 习题 答案
限制150内