人教版七年级下册数学知识点归纳.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《人教版七年级下册数学知识点归纳.pdf》由会员分享,可在线阅读,更多相关《人教版七年级下册数学知识点归纳.pdf(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版七年级下册数学知识点归纳完整版人教版七年级下册数学知识点归纳完整版第五章第五章相交线与平行线相交线与平行线平面内,点与直线之间的位置关系分为两种:点在线上 点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:相交 平行一、相交线一、相交线1 1、两条直线相交,有且只有一个交点。、两条直线相交,有且只有一个交点。(反之,若两条直线只有一个交点,则这两条直线相交。)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。邻补角互补邻补角互补。要注意区分互为邻补角与互为补角的异同。对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。对顶角相等对顶角
2、相等。注注:、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。反过来亦成立。、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。例如:判断对错:因为ABC+DBC=180,所以DBC 是邻补角。()相等的两个角互为对顶角。()2 2、垂直是两直线相交的特殊情况。注意:两直线垂直,是互相垂直,即:若线 a 垂直线 b,则线b 垂直线 a。垂足:两条互相垂直的直线的交点叫垂足。垂直时,一定要用直角符号表示出来。过一点有且只有一条直线与已知直线垂直。过一点有且只有一条直线与已知直线垂直。(注:这一
3、点可以在已知直线上,也可以在已知直线外)3 3、点到直线的距离。垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫 垂线段。垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。垂线段最短垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。(或说 直角三角形中,斜边大于直角边。)点到直线的距离:直线外一点到这条直线的垂线段的长度垂线段的长度,叫这点到直线的距离。注:距离指的是垂线段的长度,而不是这条垂线段的本身。所以,如果在判断时,若没有“长度”两字,则是错误的。4 4、同位角、内错角、同旁内角三线六面八角三线六面八角:平面内,两条直线被第三条直线所截,将平面分
4、成了六个部分,形成八个角,其中有:4 对同位角,2 对内错角和 2 对同旁内角。注意:要熟练地认识并找出这三种角:根据三种角的概念来区分 借助模型来区分,即:同位角F F 型型,内错角Z Z 型型,同旁内角U U 型型。特别注意特别注意:三角形的三个内角均互为同旁内角;同位角、内错角、同旁内角的称呼并不一定要建立在两条平行的直线被第三条直线所截的前提上才有的,这两条直线也可以不平行,也同样的有同位角、内错角、同旁内角。5 5、几何计数:平面内 n 条直线两两相交,共有n(nn(n 1)1)组对顶角。(或写成 n2n2 n n 组)平面内 n 条直线两两相交,最多有n(nn(n1)/21)/2
5、个交点。(或写成(n2n2n n)/2/2 个)平面内 n 条直线两两相交,最多把平面分割成n(n+1)/2+1n(n+1)/2+1 个面。当平面内 n 个点中任意三点均不共线时,一共可以作n(nn(n1)/21)/2 条直线。回顾:、一条直线上 n 个点之间,一共有 n(nn(n1)/21)/2 条线段;、若从一个点引出 n 条射线,则一共有 n(nn(n1)/21)/2 个角。二、平行线平行线同一平面内,两条直线若没有公共点(即交点),那么这两条直线平行。注:平行线永不相交平行线永不相交。1 1、平行公理:过直线外一点,有且只有一条直线与已知直线平行。过直线外一点,有且只有一条直线与已知直
6、线平行。(注:这一点是在直线外)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果两条直线都与第三条直线平行,那么这两条直线也互相平行。(或叫平行线的传递性传递性)2 2、平行线的画法:借助三角板和直尺。具体略。(此基本作图方法一定要掌握,多练习。)3 3、平行线的判定:同位角相等,两直线平行;同位角相等,两直线平行;内错角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。同旁内角互补,两直线平行。注意:是先看角如何,再判断两直线是否平行,前提是“角相等/互补”。一个重要结论:同一平面内,垂直于同一直线的两条直线互相平行。同一平面内,垂直于同一直线的两条直线
7、互相平行。4 4、平行线的性质:两直线平行,同位角相等;两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。两直线平行,同旁内角互补。注意:是先有两直线平行,才有以上的性质,前提是“线平行”。一个结论:平行线间的距离处处相等。平行线间的距离处处相等。例如:应用于 说明矩形(包括长方形、正方形)的对边相等,还有梯形的对角线把梯形分成分别以上底为底的两等面积的三角形,或 以下底为底的两等面积的三角形。(因为梯形的上底与下底平行,平行线间的高相等,所以,就有等底等高的三角形。)此章难度最大就在如何利用平行线的判定或性质来进行解析几何的初步推理,要在熟练掌
8、握好基本知识点的基础上,学会逻辑推理,既要条理清晰,又要简洁明了。5 5、命题判断一件事情的语句叫命题。命题包括“题设题设”和“结论结论”两部分,可写成“如果那么如果那么”的形式。例如:“明天可能下雨。”这句语句_命题,而“今天很热,明天可能下雨。”这句语句_命题。(填“是”或“不是”)命题分为真命题真命题 与 假命题假命题,真命题指题设成立,结论也成立的命题(或说正确的命题)。假命题指题设成立,但结论不一定或根本不成立的命题(或说错误的命题)。逆命题逆命题:将一个命题的题设与结论互换位置之后,形成新的命题,就叫原命题的逆命题。注:原命题是真命题,其逆命题不一定仍为真命题,同理,原命题为假命题
9、,其逆命题也不一定为假命题。例如:“对顶角相等”是个真命题,但其逆命题“_”却是个假命题。不论是真命题还是假命题,都要学会能非常熟练地把一个命题写成“如果那么”的形式。例:把“等角的补角相等”写成“如果 那么”的形式为:_。再例:把“三角形的内角和等于180 度。”写成包含题设与结论的形式:_。三、平移平移1、概念:把图形的整体沿着某一方向某一方向移动一定的距离一定的距离,得到一个新的图形,这种图形的移动,叫平移。确定平移,关键是要弄清平移的方向(并不一定是水平移动或垂直移动哦)与平移的距离。如果是斜着平移的,则需把由起始位置至最终位置拆分为先水平移动,再上下移动,或拆分为先上下移动,再水平移
10、动。当然,如果是在格点图格点图内平移,则可利用已知点的平移距离是某一矩形的对角线这一特点来对应完成其它顶点的平移。2、特征:发生平移时,新图形与原图形的形状、大小完全相同(即:对应线段、对应角均相等对应线段、对应角均相等);对应点之间的线段互相平行(或在同一直线上)且相等,均等于平移距离。3、画法:掌握平移方向与平移距离,利用对应点(一般指图形的顶点)之间连线段平行、连线段相等性质描出原图形顶点的对应点,再依次连接,就形成平移后的新图形。第六章第六章平面直角坐标系平面直角坐标系一、坐标一、坐标1 1、数轴、数轴规定了原点、正方向、单位长度的直线叫数轴。数轴上的点可以用一个数来表示,这个数叫这个
11、点在数轴上的坐标。数轴上的点与实数(包括有理数与无理数)一一对应,数轴上的每一个点都有唯一的一个数与之对应。2 2、平面直角坐标系、平面直角坐标系由互相垂直、且原点重合的两条数轴组成。横向(水平)方向的为横轴(x 轴),纵向(竖直)方向的为纵轴(y 轴),平面直角坐标系上的任一点,都可用一对有序实数对来表示位置,这对有序实数对就叫这点的坐标。(即是用有顺序的两个数来表示,注:x 在前,y 在后,不能随意更改)坐标平面内的点与有序实数对是一一对应的,每一个点,都有唯一的一对有序实数对与之对应。二、象限及坐标平面内点的特点二、象限及坐标平面内点的特点1 1、四个象限、四个象限平面直角坐标系把坐标平
12、面分成四个象限,从右上部分开始,按 逆时针逆时针方向分别叫第一象限(或第象限)、第二象限(或第象限)、第三象限(第象限)和第四象限(或第象限)。注:、坐标轴(x 轴、y 轴)上的点不属于任何一个象限。例 点 A(3,0)和点 B(0,-5)、平面直角坐标系的原点发生改变,则点的坐标相应发生改变;坐标轴的单位长度发生改变,点的坐标也相应发生改变。2 2、坐标平面内点的位置特点、坐标平面内点的位置特点、坐标原点的坐标为(0,0);、第一象限内的点,x、y 同号,均为正;、第二象限内的点,x、y 异号,x 为负,y 为正;、第三象限内的点,x、y 同号,均为负;、第四象限内的点,x、y 异号,x 为
13、正,y 为负;、横轴(x 轴)上的点,纵坐标为0,即(x,0),所以,横轴也可写作:y=0(表示一条直线)、纵轴(y 轴)上的点,横坐标为0,即(0,y),所以,纵横也可写作:x=0(表示一条直线)例:若 P(x,y),已知 xy0,则 P 点在第_象限,已知 xyc,或 a+cb,或 b+ca)2 2、推论:三角形的任意两边之差小于第三边三角形的任意两边之差小于第三边。特别注意:(1)、以上两点就是判断任意给定的三条线段能否组成三角形的条件,但在实际做题时,并不需要去分析全部三组边的大小关系,可简化为:当三条线段中最长的线段小于另两条较短线段之和时,或或 当三条线段中最短的线段大于另两条较长
14、线段之差的绝对值时,即可组成三角形。(2)、已知三角形的两边a,b(ab),则第三边 c 的取值范围为:ab c 0)、a+3,a+4,a+7(a0)、3a,4a,2a+1(a1/5)例:已知 M 是ABC 内一点,试说明:AB+AC MB+MC (图自画)四、有关三角形边长的综合问题四、有关三角形边长的综合问题1 1、等腰三角形:等腰三角形有两相等的腰和一底边,题目中往往并不直接说明腰和底边,因此,解题时要分类讨论,以免丢解。例:等腰三角形的周长为24cm,其中两条边长的比为 3:2,求该等腰三角形的三边长。例:已知等腰三角形的周长是16cm,(1)若其中一边长为 6cm,求另外两边长;(2
15、)若其中一边长为 4cm,求另外两边长。例:在等腰ABC 中,AB=AC,一腰上的中线 BD 将三角形周长分为 21 和 12 两部分,求这个三角形的腰长和底边长。注:根据三角形三边关系,若等腰三角形的腰长为若等腰三角形的腰长为 a a,则底边长,则底边长 x x 的取值范围是:的取值范围是:0 x 2a0 x a/2x a/22 2、其它例:已知ABC 和三角形内的一点 P,试说明:AB+AC PB+PC (图略)五、三角形的中线、角平分线和高五、三角形的中线、角平分线和高(图表区别)名称中线中线角平分线角平分线高高定义三角形一边上的中点与这边所对的顶点的连线段三角形一个角的平分线与对边相交
16、,顶点与交点的连线段从三角形的顶点向对边或对边的延长线作垂线,垂足与顶点的连线段形状线段线段线段数量 3 条 3条 3条位置三角形内部三角形内部交点情况交于同一点,位于三角形内,叫三角形的重心交于同一点,位于三角形内,叫三角形的内心锐角三角形的高均在三角形内;直角三角形斜边上的高在三角形内,另两条高与两条直角边重合;钝角三角形最长边上的高在三角形内,另两条高在三角形外。交于同一点,叫三角形的垂心:锐角三角形高的交点位于三角形内部;直角三角形高的交点与直角顶点重合;钝角三角形高的交点在三角形的外部。例:判断对错:(1)三角形的三条高在三角形的内部。()(2)以三角形的顶点为端点,且平分三角形内角
17、的射线叫做三角形的角平分线。()(3)三角形的中线将三角形分为面积相等的两个三角形。()(4)三角形的三条角平分线和三条中线在三角形内部或外部。()注:1、画任意一个三角形的三条高,对于初学者来讲,有时会不太熟练,记住,要掌握好三角形的高的定义及位置情况,根据定义正确画出三角形的高,口诀:口诀:“一靠二过三画线”“一靠二过三画线”;2、要区分角的平分线和三角形角的平分线,前者是射线,后者是线段前者是射线,后者是线段;3、三角形的一条中线把三角形的面积一分为二(因为“等底等高的三角形面积相等”),三角形的任意一条边与该边上的高的乘积的一半都等于这个三角形的面积,所以,有时,题目中出现了中线,或出
18、现了高时,一定要有从面积入手来解题的意识。4、三角形的三条中线相交于一点(这点叫三角形的重心),且把原三角形分成面积相等的六个部分(即六个小三角形)。六、三角形的稳定性六、三角形的稳定性三角形的三条边固定,那么三角形的形状和大小就完全确定了,这个性质叫三角形的稳定性三角形的稳定性。除了三角形外,其它的多边形不具有稳定性,但可以通过连接对角线,把多边形转化为若干个三角形,这个多边形也就具有稳定性了。多边形要具有稳定性,四边形要添一条对角线,五边形要添二条对角线,n 边形要添(n-3)条对角线。七、三角形的内角和定理七、三角形的内角和定理三角形的内角和等于三角形的内角和等于 180180 度。度。
19、要会利用平行线性质、邻补角、平角等相关知识推出三角形内角和定理。注:、已知三角形的两个内角度数,可求出第三个角的度数;、等边三角形的每一个内角都等于 60 度;、如果已知等腰三角形的一个内角等于 60 度,那么这个等腰三角形就是等边三角形。、三角形中,有“大角对大边,大边对大角”性质,即度数较大的角,所对的边就较长,或较长的边,所对的角的度数较大。例:(1)已知等腰三角形的一个内角等于70 度,则另外两个内角的度数分别是多少度?(2)等腰三角形的一个外角是100,求这个三角形的三个内角度数。八、三角形的外角及其性质八、三角形的外角及其性质三角形的每一个内角都有相邻的两个外角,且这两个外角相等(
20、对顶角相等)。一共有六个外角。其中,从与三角形的每一个内角相邻的两个外角中各取一个外角相加(一共三个外角相加),叫三角形的外角和。根据邻补角、三角形的内角和等相关知识,可知:三角形的外角和三角形的外角和=360=360 度。度。性质 1、三角形的一个外角等于与它不相邻的两个内角和。三角形的一个外角等于与它不相邻的两个内角和。性质 2、三角形的一个外角大于任何一个与它不相邻的内角。三角形的一个外角大于任何一个与它不相邻的内角。(常用于解决角的不等关系问题)例:等腰三角形的一个外角等于100 度,则这个等腰三角形的三个内角分别是多少度?例:试用合适的方法说明五角星的五个顶角和等于180(图自画)注
21、:(1)、ABC 内有一点 O,连接 BO、CO,则有BOC=A+ABO+ACO图略(2)、ABC 内有一点 M,连接 BM、CM,BO、CO 分别是ABM 和ACM 的平分线,则有BOC=(A+BMC)/2(3)、一个五角星,五个顶角的和等于180180 度度。(可利用性质 1 和三角形的内角和来加以证明)(4)、BO、CO 分别是ABC 的内角内角平分线,BO、CO 相交于点 O,则BOC=90+A/2(5)、BO、CO 分别是ABC 的外角外角平分线,BO、CO 相交于点 O,则BOC=90-A/2(6)、BO 是ABC 的内角内角平分线,CO 是ABC 的外角外角平分线,BO、CO 相
22、交于点 O,则BOC=A/2(7)、锐角三角形两条边上的高相交所成的夹角与第三边所对的角互补;直角三角形两条边上的高相交所成的夹角与第三边所对的角相等;钝角三角形一条钝角边上的高与钝角所对最大边上的高相交所成的夹角与另一钝角边所对的角相等,但若是两条钝角边上的高相交所成的夹角,则与第三边所对的角互补。请自行用合适的方法说明以上各点!九、多边形及其内角和、外角和九、多边形及其内角和、外角和1 1、概念:由不在同一直线上不在同一直线上的一些线段首尾顺次相接线段首尾顺次相接组成的平面图形平面图形叫做多边形。三角形是最简单的多边形。注:、多边形分为凸多边形 和 凹多边形,我们初中阶段只研究凸多边形。凸
23、多边形:整个多边形都在任何一条边所在直线的同一侧,这样的多边形叫凸多边形。、正多边形:各个内角都相等,各条边都相等的多边形叫正多边形。(注:边、角均相等两条件缺一不可)、各边都相等的多边形不一定是正多边形,例如菱形;各内角都相等的多边形不一定是正多边形,例如矩形。2 2、多边形的内角和定理:n 边形内角和等于:(n-2n-2)180180推导方法(1):由 n 边形的一个顶点出发,作n 边形的对角线,一共可以作(n-3)条对角线,这些对角线把原来的 n 边形分成了(n-2)个三角形,由三角形的内角和等于180,可得出该 n 边形的内角和为:(n-2n-2)180180推导方法(2):在 n 边
24、形的一边上任取一点,由这一点出发,连接 n 边形的各个顶点(与所取点相邻的两个顶点除外),一共可以作(n-2)条连接线段,这些线段把原来的 n 边形分成了(n-1)个三角形,但却多出了一个平角,所以,该 n 边形的内角和为:(n-1)180-180=(n-2n-2)180180推导方法(3):在 n 边形内任取一点,由这一点出发,连接 n 边形的各个顶点,一共可以作 n 条连接线段,这些线段把原来的 n 边形分成了 n 个三角形,但中间却多出了一个周角,所以,该n 边形的内角和为:n 180-360=(n-2n-2)180180注:、正 n 边形的每一个内角都等于(n-2)180/n、多边形的
25、内角和是180的整倍数。、若多边形的边数增加 n 条,则它的内角和增加 n180、若多边形的边数扩大 2 倍,则它的内角和增加 n180、若多边形的边数扩大m 倍,则它的内角和增加(m-1)n180例:一个多边形的所有内角和其中一个外角的度数和是1335,这是个_边形,这个外角为_度。一个多边形除了一个内角外,其余内角之和为 1680,则这个多边形是_边形,这个内角为_度。3 3、多边形的外角和:多边形的外角和是一个定值,恒等于恒等于 360360。指的是取多边形每一个顶点处的一个外角相加的和,故 n 边形的外角和指的是 n 个外角相加的和。多边形的外角和与边数无关。注:、n 边形有n(n-3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版七 年级 下册 数学 知识点 归纳
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内