有色金属冶金基础理论34419.pptx
《有色金属冶金基础理论34419.pptx》由会员分享,可在线阅读,更多相关《有色金属冶金基础理论34419.pptx(102页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、有色金属冶金基础(理论)(湿法部分)东北大学有色冶金研究所东北大学有色冶金研究所吴文远吴文远20092009年年3 3月月1课程内容:n第一节 概述n第二节 浸出反应特点n第二节 浸出热力学n第三节 浸出动力学n第四节 浸出液的净化意义与方法n第五节 沉淀法净化的原理n第六节 影响沉淀生成的因素n第七节 溶剂萃取分离2第一节 概述n一、湿法冶金的任务n 锌冶金 80%;n 铜冶金 15%20%;n 氧化铝生产 100%;n 贵金属冶金 100%;n 稀有金属化合物提取 100%。3湿法冶金研究的内容n原料的预处理:(1)矿物粉碎-增大表面积,提高浸出率;(2)预活化-采用焙烧,机械活化等方法,
2、改变矿物的化学性质或晶体结构,以有利于有价元素的提取;(3)浸出;(4)净化;(5)纯化合物制备(包括分离方法);(6)金属制备。4二 湿法冶金的特点1选择性高;2可从低品位矿物或废物中回收有价成份;3多在100以下进行,与火法相比,能耗低、工作环境好、劳动强度低;4冶金过程连续,便于实现自动化;5流程长,设备体积大,占地面积大。5第二节 浸出反应特点1 浸出过程的化学反应 浸出过程按化学反应特点可归纳为四类:(1)单一溶解 矿物焙烧后其中含有易溶的化合物,浸出过程其化合物不改变。(2)无价态变化的化学溶解 矿物中氧化物与酸和碱反应形成新的盐而溶出 ZnO+H2SO4=ZnSO4+H2O 矿物
3、中的难溶化合物与浸出剂发生复分解反应FexMn1-xWO4+2NaOH=Na2Wo4+XFe(OH)2+(1-X)Mn(OH)26n(3)有氧化还原反应的化学溶解 闪锌矿中ZnS用高压氧浸出反应ZnS(S)+H2SO4(l)+1/2O2=ZnSO4(l)+S(s)+H2O价态变化:S2-S0;O0 O2-Zn2+,H+价态不变。7 氯盐浸出辉锑矿(氯化浸出)Sb2S3(s)+6FeCl3(l)=2SbCl3(l)+6FeCl2(l)+3S(s)价态变化:Sb3+Sb3+(无变化)Fe3+Fe2+(还原)S2-S0 (氧化)细菌作用下的黄铜矿氧化浸出反应 CuFeS2+4O2=CuSO4+FeS
4、O4S2-S+6 (氧化);O0 O2-(还原)8(4)有络合物生成的化学溶解反应 金属元素在发生上述反应的同时生成络合物进入溶液。如红土矿还原焙烧产物的氨浸出反应:Ni(s)+NH3+CO2+1/2O2=Ni(NH3)n2+CO32-Co(s)+NH3+CO2+1/2O2=Co(NH3)n2+CO32-上述中Ni(NH3)n2+络合物n代表的是Ni的配位数。9金属离子的配位数:Zn,Cd,Hg(二价离子,配位数为4);Cu,Ni,Pd,Pt,Au(二价离子,配位数为4,6);Co2+,Co3+,Fe2+,Fe3+,Mn2+,Mn3+,Cr2+,Cr3+,Mo3+,W3+,Al3+,Pt4+(
5、配位数为6);Mo,W,Nb,Ti,Zr,Hf(四价离子,配位数为8);;Ag2+,Cu+,(配位数为2,3,4)。本质上讲,络合物就是含配位键的化合物,因此也称为配合物。10n自然金矿的氰化浸出属于络合浸出过程:4Au(s)+8NaCN(l)+O2+2H2O=4NaAuCN2+4NaOH NaCN-配位体 Au-接受中心 NaAuCN2-配合物,2为配位数112矿物类型与浸出方法(1)硫化物矿闪锌矿(ZnS);辉钼矿(MoS2);镍锍矿(Ni3S2)(2)浸出方法 先氧化焙烧转化为氧化物,而后浸出 硫酸,盐酸浸出 直接进出氧化浸出,Na2S浸出锑、锡矿,细菌浸出,氯化浸出12(2)氧化物矿
6、铝土矿-碱分解 氧化铜矿-依矿物的脉石不同,采用酸或碱浸出(3)阴离子型态矿物 白钨矿-碱分解浸出 黑钨矿-碱分解浸出(4)呈金属型态矿物金矿,经还原焙烧的镍红土矿-在有氧及络合剂条件下,氨浸,氰化浸出。13第三节 浸出过程热力学 针对浸出化学反应,用热力学参数判别该反应进行的可行性和反应限度。1吉布斯自由能 浸出过程的特点是固相矿物与液相浸出剂作用,使提取金属生成可溶化合物,而伴生元素生成难溶化合物(或不参加反应)的过程。其表示为:a A(矿)+bB(浸出剂)=cC(伴生矿)+dD(浸出物)该反应的自由能变化可以通过各物质生成自由能计算。GoT=dGo+cGo-(aGo+bGo)GoT1;负
7、偏差r1),此时活度系数难求出,有时用表观平衡常数KC判定浸出反应发生的可能性与反应限度。Kc=Dd/Bb K=aDd/aBb =rDdDd/rBbBb =KC rDd/rBb16(2)电解质体系的活度系数计算方法 电解质活度aB与离子平均活度a 浸出介质一般为电解质体系,盐类化合物电离为离子。MZ+nXZ-n=ZMn+ZXn-Z+n,Z-n分别代表氧离子和阴离子数目溶质MZ+nXZ-n的活度aZ=a+Z+a-Z-;Z=Z+Z-同样活度系数表示为r=(r+Z+r-Z-)1/Z用mol浓度单位表示活度a=rm;m=(m+Z+m-Z-)1/Z17电解质溶液中活度系数计算方法 强电解质中分子解力为离
8、子,但正、负离子由于静电的作用相互牵制,而且离子总数越多,其作用越强。P.Dobye和E.Hukel根据此原理提出了离子相互吸引模型,P.Dobye-E.Hukel公式I=1/2miZi2 I离子强度;mi第i种离子的浓度;Z-离子的电荷数 又进一步从理论上计算了电解质中的离子平均活度系数:lgr=-AZ+Z-I -1上式称为P.Dobye-E.Hukel公式18P.Dobye-E.Hukel公式归纳建立在四点基本假设上:(1)认为离子为点电荷;(2)离子间只有库仑力作用;(3)离子间的热运动能大于它们间的吸引能;(4)溶液的介电常数和溶剂的介电常数无差别。能够满足四个条件的只有浓度很低的(0
9、.001m以下)的非常稀溶液。通常湿法冶金溶液不能满足这些条件。Guggenheim在基础上提出了半经验公式:lgr=-AZ+Z-I/(1+B I)+BI219lgrlgr=-A=-AZ Z+Z Z-I/I/(1+B1+B II)+bI+bI 离子有效直径;B常数;b经验常数 修正后的公式应用的浓度范围可以达到1mol/l。公式中A,B数值只与温度有关:温度/0 15 25 30 40 50 A 0.488 0.500 0.509 0.514 0.524 0.535 B(nm)3.25 3.25 3.30 3.31 3.33 3.35电解质溶液中的b值电解质 HCl NaCl KCl NaNO
10、3 KNO3 b 0.240 0.195 0.130 0.000 -0.206 2025时,一些离子的有效直径,离子强度与活度系数 离子/nmI/0.005 I/0.01I/0.05I/0.1H+0.90.934 0.914 0.854 0.826Na+,HCO3-0.40.927 0.902 0.817 0.770F-,OH-,MnO4-0.350.926 0.900 0.812 0.762K+,Cl-,NO3-0.30.925 0.899 0.807 0.754Ag+,NH4+0.250.925 0.897 0.802 0.745Ca2+,Co2+,Cu2+,Zn2+,Ni2+,Mn2+0
11、.60.748 0.676 0.482 0.402Ba2+,Cd2+,S2-0.50.743 0.669 0.465 0.377Al3+,Cr3+,Fe3+,La3+,Sc3+0.90.540 0.443 0.242 0.17021n 对于完全解离或缔合的硫酸盐电解质另有一个经验公式;r=0.056(lgI)2+0.06(-lgI)+0.016 -3Davis完全经验公式:由于半经验公式中的和b难确定,Davis通过试验总结出了简易的完全经验公式:lgrlgr=-0.5=-0.5Z Z+Z Z-I/I/(1+II/I/(1+I)-0.3I 4-0.3I 4 应用上述四个公式是需注意溶液的特性,
12、经常应用上述四个公式是需注意溶液的特性,经常由于溶液不同得到结果不同。由于溶液不同得到结果不同。223.表观平衡常数Kc的用途(1)判断浸出反应的可能性浸出反应:a A(s)+bB(l)=cC(s)+dD(l)反应达平衡时:K=aDd/aBb=rDdDd/rBbBd=KC rDd/rBb当活度系数不知时,可用Kc初步判断可行性。测试溶液中的D和B浓度,由公式Kc=Dd/Bd和GoT=-nRTlnK式计算反应自由能的数值。23(2)计算反应完全时所需浸出剂的最小过量系数:浸出反应:a A(s)+bB(l)=cC(s)+dD(l)浸出剂B加入量包括两个方面的需要:反应消耗mB耗mB耗=(b/c)m
13、c=(b/d)mD=(b/a)MA计算与溶液中D保持平衡所需要的量mB剩和过量系数。令,=mB剩/mB耗=mB剩/(b/d)mD=dB/bD24已知溶液中的物质浓度比值等于摩尔之比,即平衡时有:=mB剩/mB耗=mB剩/(b/d)mD=dB/bD Dd/Bb=KC B=(Dd/KC)1/b由此得过量系数与表观平衡常数的关系式:=(Dd/KC)1/b/(b/d)D25(3)KC与的意义 KC越大,表明浸出剂B消耗越快,使得 mB剩越小,即=mB剩/mB耗越小。为使浸出反应继续进行,则需增加B的加入量。同样,增加B的加入量,引起升高,反应平衡向右移动,Kc增大。在一定的条件下,Kc趋近一个不变值时
14、的称为维持平衡所需最小过量系数,即溶液中必须有的B存在量。生产中为了获得最大浸出率的同时,应寻求最小的原料消耗,则应首先求出。26例如:用碳酸钠分解白钨矿的实验得出如下数据:CaWO4(s)+NaCO3(I)=CaCO3(S)+Na2WO4(I)反应式中:a=b=c=d=1,故:=(D/Kc)/D=1/Kc,实验中测出Kc,Kc=D/B90175 200 250苏打用量1.01.211.01.52.02.50.751.01.52.02.170.830.690.841.041.490.640.660.671.01Kc0.461.211.451.190.960.671.561.521.490.99
15、27实验结果讨论:(1)90时最大,Kc最小,175 时仍较大,Kc居中;说明温度相对低时不是最佳分解条件。(2)200时随苏打量的增加,升高,Kc下降,说明此温度下反应能力已达到最大,增加B已没有意义。(3)250时随苏打量的增加,趋于稳定,Kc值较大,说明此温度下反应处于最佳条件下(仅适用于实验条件范围)。28例如:碱分解独居石的化学反应过程REPO4(S)+3NaOH(l)=RE(OH)3(S)+Na3PO4(l)式中,a=c=d=1;b=3因此,=1/3 Na3PO4(l)-2/3Kc-1/2讨论:随Kc的升高而减小;随D增大而减小;减小固:液比,增大浓度,有利于减小NaOH用 量。2
16、94平衡常数的测定(1)表观平衡常数的测定 浸出反应:a A(s)+bB(l)=cC(l)+dD(l)Kc=CcDd/Bb 为了避免家平衡现象,实验中应注意几点问题:一般只将A和B投入反应器进行反应。按一定的时间间隔取样分析溶液成份,随时间的延长,浓度不变化时则认为达到平衡。这种方法对于固-液反应而言,由于动力学原因(生成物以致密膜覆盖于A表面,阻碍反应的继续进行,降低反应速度,使平衡时间延长)难以得到平衡状态。30弥补的办法:在A与B进行浸出反应的同时,将生成物C和D混合进行逆反应,在同样的条件下,测定实际浓度商随时间的变化,当正和逆反应测定值相近时则认为达到平衡。31防止待浸出原料在浸出过
17、程中不足,造成假平衡,使Kc过低;B的加入量应大于理论计算A的量。取出试样应立即分析,防止试样在过滤时继续反应,使平衡移动,不能反应实验条件下的真实情况。实验原料量应足够多,防止取样次数引起体积变化过大。32(2)平衡常数的计算方法根据实验测定的平衡状态下的溶液成份,再根据已知的活度系数计算活度,计算出K有浸出反应的自由能与平衡常数的关系式求出K GoT=-nRTlnK根据反应物与生成物的溶度积计算K 生成难溶物和液相的复分解浸出过程其反应为:kMmAn(s)+mmNakB(l)=mMkBn(s)+nkNamA(l)其离子反应式为:kMmAn(s)+mmBk-(l)=mMkBn(s)+nkAm
18、-(l)平衡常数:K=aAm-nk/aBk-mn33 K=aAm-nkaMn+mk/aBk-mnaMn+mk =(aAm-naMn+m)k/(aBk-naMn+k)m =Ksp(MmAn)/Ksp(MkBn)应注意可查到的Ksp一般为25水溶液中的,温差和溶液酸碱度过大导致K值偏差,应用实验条件下的Ksp,也称为条件溶度积或有效溶度积。条件溶度积可在一定的条件下实验测得。34对于有氧化对于有氧化-还原反应的浸出过程,可根据反应的标准电还原反应的浸出过程,可根据反应的标准电动势计算动势计算K K式中,B被氧化,A被还原(A,B只代表参加氧化-还原反应的元素,不表示化合物)。因此该反应应该由两个电
19、极反应组成。A得电子还原:kA+ze=mA 电极电位1B失电子氧化:pB-ze=fB 电极电位235 E=2-1 =20+RT/ZFln(氧化态/还原态)-10-RT/ZFln(氧化态/还原态)=20-10+RT/ZFln(B氧化态 A还原态/A氧化 态 B还原态)=E0+RT/ZFlnK当反应达平衡时,E=0,即2-1=0则,E0=RT/ZFlnK由此解出平衡常数 K 36有Kc实验测定数据求K 实际溶液中的离子浓度与理想溶液比很高,离子键作用强,不服从拉乌尔定律:P=P0N。当离子强度 I 接近零时,溶液接近理想状态,此时KKc。以离子强度和Kc作图,再将曲线外延至I=0,得出K。37第三
20、节 浸出过程动力学 1多相反应特征 浸出(或者说矿物的湿法分解)过程是一个固/液多相化学反应过程,其反应速度取决于该反应的动力学特征。a A(矿)+bB(分解剂)=cC(生成固体)+dD(生成液体)38 上图表明矿物浸出过程包括7个步骤:1浸出剂通过边界层向矿物表面扩散;2-浸出剂被吸附在矿物表面;3-吸附的浸出剂扩散通过固体膜;4-浸出剂与矿物反应;5-生成的不溶产物使固体膜增厚,可溶产物 通过固体膜;6-可溶产物在在固体膜表面解吸;7-可溶产物向溶液中扩散。反应总速度决定于其中最慢步骤速度,称为反应过程的限制(或控制)步骤。其可归为两类:化学反应速度限制和扩散速度过程限制。39 2化学反应
21、速度控制的动力学方程式(1)方程的建立 固/液相间扩散阻力极小,反应速度过化学反应速度控制,且浸出剂浓度足够大,可视为常数,则对1级反应有:-dW/dt=kSC多相化学反应速度与固/液界面的几何形状关系甚大,若矿物颗粒为球型,设其半径为r,密度为,则有:表面积 S=4r2 重 量 W=4/3r3 得:-dW/dt=4 4rr2 2dr/dtdr/dt -4r -4r2 2dr/dt=4rdr/dt=4r2 2KCKC积分上式得:r r0 0-r=KCo-r=KCo/t/t 40 球型颗粒半径不便测定,可用反应分数与t的关系表示反应动力学方程。=((Wo-W)/Wo)=(4/3r03-4/3r3
22、)/4/3r03 =1-r3/r03 r=r0(1-)1/3 将该式代入 r0-r=KCot/式中得:r0-r0(1-)1/3 =KCot/1-(1-)1/3 =KCot/r0对于不同颗粒形状的化学反应速度方程,同样有 1-(1-)1/Fp =KCot/rpFp-形状因子;球形为3;圆柱为2-3;平板为1rp=Fp Vp/Sp;Vp和Sp分别为颗粒的体积和表面积 41(2)化学反应速度方程的特征分解率与时间关系代入方程呈直线,并过原点;反应速度随温度升高而升高,根据阿累尼乌斯公式 K=(-E/RT)+B,在不同温度下的K,可计算出E大于4.18KJ/mol;反应速度与浸出剂浓度Co成正比;搅拌
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有色金属 冶金 基础理论 34419
限制150内