多元线性回归(共5页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《多元线性回归(共5页).doc》由会员分享,可在线阅读,更多相关《多元线性回归(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上简要回答题:1. 在多元线性回归分析中,F检验和t检验有何不同?答案:在多元线性回归中,由于有多个自变量,F检验与t检验不是等价的。F检验主要是检验因变量同多个自变量的整体线性关系是否显著,在k个自变量中,只要有一个自变量同因变量的线性关系显著,F检验就显著,但这不一定意味着每个自变量同因变量的关系都显著。检验则是对每个回归系数分别进行单独的检验,以判断每个自变量对因变量的影响是否显著。知识点:多元线性回归难易度:12. 在多元线性回归分析中,如果某个回归系数的t检验不显著,是否就意味着这个自变量与因变量之间的线性回归不显著?为什么?当出现这种情况时应如何处理?答案:
2、(1)在多元线性回归分析中,当t检验表明某个回归系数不显著时,也不能断定这个自变量与因变量之间线性关系就不显著。因为当多个自变量之间彼此显著相关时,就可能造成某个或某些回归系数通不过检验,这种情况称为模型中存在多重共线性。(2)当模型中存在多重共线性时,应对自变量有所选择。变量选择的方法主要有向前选择、向后剔除和逐步回归等。知识点:多元线性回归难易度:2计算分析题:1. 一家餐饮连锁店拥有多家分店。管理者认为,营业额的多少与各分店的营业面积和服务人员的多少有一定关系,并试图建立一个回归模型,通过营业面积和服务人员的多少来预测营业额。为此,收集到10家分店的营业额(万元)、营业面积(平方米)和服
3、务人员数(人)的数据。经回归得到下面的有关结果(a=0.05)。回归统计 Multiple R R Square Adjusted R Square 标准误差 0.91470.83660.789960.7063方差分析 dfSSMSFSignificance F回归 2.19966046.60017.9220.002残差 725796.8013685.257 总计 9.000 参数估计和检验 Coefficients标准误差 t StatP-valueIntercept-115.288110.568-1.0430.332X Variable 10.5780.5031.1490.288X Var
4、iable 23.9350.6995.6280.001(1) 指出上述回归中的因变量和自变量。(2) 写出多元线性回归方程。(3) 分析回归方程的拟合优度。(4) 对回归模型的线性关系进行显著性检验。答案:(1)自变量是营业面积和销售人员数,因变量是营业额。(2)多元线性回归方程为:。(3)判定系数,表明在营业额的总变差中,有83.66%可由营业额与营业面积和服务人员数之间的线性关系来解释,说明回归方程的拟合程度较高。估计标准误差,表示用营业面积和服务人员数来预测营业额时,平均的预测误差为60.7036万元。(4)从方差分析表可以看出,营业额与营业面积和服务人员数之间的线性模型是显著的。知识点
5、:多元线性回归难易度:2 2. 机抽取的15家超市,对它们销售的同类产品集到销售价格、购进价格和销售费用的有关数据(单位:元)。设销售价格为y、购进价格为、销售费用为,经回归得到下面的有关结果(a=0.05):方差分析 dfSSMSFSignificance F回归 261514.1730757.0912.880.0010残差 1228646.762387.23 总计 1490160.93 参数估计和检验 Coefficients标准误差 t StatP-valueIntercept637.07112.635.660.0001X Variable 10.180.082.330.0380X Va
6、riable 21.590.344.710.0005(1) 写出多元线性回归方程,并解释各回归系数的实际意义。(2) 计算判定系数,并解释其实际意义。(3) 计算估计标准误差,并解释其意义。(4) 根据上述结果,你认为用购进价格和销售费用来预测销售价格是否都有用?请说明理由。答案:(1)多元线性回归方程为:。偏回归系数表示:在销售费用不变的条件下,购进价格每增加1元,销售价格平均增加0.18元;偏回归系数表示:在购进价格不变的条件下,销售费用每增加1元,销售价格平均增加1.59元。(2)判定系数,表明在销售价格总变差中,有68.23%可由销售价格与购进价格和销售费用之间的线性关系来解释,说明回
7、归方程的拟合程度一般。(3)估计标准误差,表示用购进价格和销售费用来预测销售价格时,平均的预测误差为48.86元。(4)都有用。因为两个回归系数检验的 值均小于0.05,都是显著的。知识点:多元线性回归难易度:3 3. 经济和管理专业的学生在学习统计学课程之前,通常已经学过概率统计课程。经验表明,统计学考试成绩的高低与概率统计的考试成绩密切相关,而且与期末复习时间的多少也有很强的关系。根据随机抽取的15名学生的一个样本,得到统计学考试分数、概率统计的考试分数和期末统计学的复习时间(单位:小时)数据,经回归得到下面的有关结果(a=0.05):方差分析 dfSSMSFSignificance F回
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多元 线性 回归
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内