第十章资本资产定价模型.ppt
《第十章资本资产定价模型.ppt》由会员分享,可在线阅读,更多相关《第十章资本资产定价模型.ppt(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、20 五月 2023第十章资本资产定价模第十章资本资产定价模型型第一节第一节 资本资产定价模型资本资产定价模型无风险资产与风险资产之间的资本配置无风险资产与风险资产之间的资本配置最优风险资产组合最优风险资产组合资本资产定价模型的假定资本资产定价模型的假定资本市场线(资本市场线(CML)与证券市场线()与证券市场线(SML)一、无风险资产与风险资产之间的配置一、无风险资产与风险资产之间的配置(一)一种风险资产(组合)与一种无风险资产的组合 根据资产组合期望收益与方差的计算公式,可知无风险资产F与风险资产P构成的组合C满足以下方程式:E(rc)=yE(rp)+(1-y)rf (1)pc=y (2
2、2)将(1)和(2)式整理,得到,一、无风险资产与风险资产之间的配置一、无风险资产与风险资产之间的配置 一、一、无风险资产与风险资产之间的配置无风险资产与风险资产之间的配置 上式表明,组合C的期望收益与标准差之间存在线性关系,也就是说,由无风险资产F与风险资产(组合)P的所有可能组合都会落在F与P的连结直线上,这条直线被称为资本配置线(CAL)。CAL的截距为无风险利率rf;斜率为报酬-波动(收益-风险)比率S=E(rP)rf/P,它反映了每增加一单位标准差而相应增加的期望收益,换言之,是测度为每单位额外风险提供的额外报酬。一个例子:假设:无风险资产为F,风险资产(组合)为P,且有,rf=7%
3、f=0%E(rp)=15%p=22%y=%in p(1-y)=%in F一、一、无风险资产与风险资产之间的配置无风险资产与风险资产之间的配置If y=.75,E(rc)=.75(.15)+.25(.07)=.13 c=.75(.22)=.165If y=1,E(rc)=1(.15)+0(.07)=.15 c=1(.22)=.22If y=0,E(rc)=0(.15)+1(.07)=.07 c=0(.22)=0一、一、无风险资产与风险资产之间的配置无风险资产与风险资产之间的配置E(r)E(rp)=15%rf=7%22%0PF cE(rc)=13%CCALE(rp)-rf=8%)S=8/22一、一
4、、无风险资产与风险资产之间的配置无风险资产与风险资产之间的配置借入资金购买风险资产E(r)9%7%)S=.36)S=.27P p=22%CAL一、一、无风险资产与风险资产之间的配置无风险资产与风险资产之间的配置(二)无差异曲线与资本配置E(r)7%P p=22%一、一、无风险资产与风险资产之间的配置无风险资产与风险资产之间的配置二、最优风险资产组合二、最优风险资产组合(一)多种风险资产的组合与无风险资产之间的 配置 无风险资产可以与多种风险资产组合可行域中的任何一个组合进行配置,新组合的可行域会发生变化。见下图:二、最优风险资产组合二、最优风险资产组合(二)可行域与有效边界n无风险资产与多种风
5、险资产组合的新组合的可行域为两条射线之间的平面区域,这两条射线与风险资产组合的边缘相切。n根据均值-方差原则,可以确定出新组合的有效边界为射线FR。二、最优风险资产组合二、最优风险资产组合二、最优风险资产组合二、最优风险资产组合n所有新的有效组合均可视为无风险证券F与风险组合R的再组合。n投资者将根据自己的偏好在射线FR上选择他认为最优的证券组合。n保守一些的投资者可以同时买入适量的无风险证券和风险资产组合R,从而获得F与R之间的某个位置,比如A。二、最优风险资产组合二、最优风险资产组合n如果更愿意冒险一些,则可以卖空无风险证券并将收入连同自有资金投资于风险证券R,从而获得FR延长线上的一个适
6、当位置,比如B。n可见,每一个投资者都是将资金分配于F和R上,只不过不同的投资者分配的权数不同(表现为在射线FR上选择的点不同)二、最优风险资产组合二、最优风险资产组合E(r)FrfAPQBCAL1St.DevCAL2二、最优风险资产组合二、最优风险资产组合(三)最优风险资产组合n证券组合R具有特别重要的意义。因为它是惟一的既位于原来的风险资产组合可行域的有效边缘上,又位于新的有效边缘上的组合,也就是说,(在共同偏好规则下)对于任何一个投资者来说,它都是风险资产组合中最好的一个,所以被称为最优风险资产组合。n最优风险资产组合可以利用数学方法确定。二、最优风险资产组合二、最优风险资产组合(四)分
7、离定理 资产组合选择可以分为独立的两个步骤:一是确定最优风险资产组合,这与投资者的风险偏好无关,所有投资者都会持有一定比例的最优风险资产组合。二是根据投资者的风险偏好,决定在无风险资产与最优风险资产组合之间的资本配置。二、最优风险资产组合二、最优风险资产组合三、资本资产定价模型的假定三、资本资产定价模型的假定(一)什么是资本资产定价模型(CAPM)资产风险与预期收益关系或者说资产定价的均衡模型,被认为是现代金融理论的基石。(二)CAPM的假定n投资者都依据期望收益率和标准差(方差)来选择证券组合;n投资者对证券的收益和风险及证券间的关联性具有完全相同的预期;n资本市场没有摩擦。三、资本资产定价
8、模型的假定三、资本资产定价模型的假定n假设意味着任何一种证券或证券组合都可以用EPP坐标系中的一个点来表示。n假设意味着在任意给定n种证券后,投资者都将在同一条有效边缘上选择各自的证券组合,也就是说,投资者会倾向于持有同样的(最优)风险资产组合。n假设中的“无摩擦”是指不考虑交易成本及税收,信息向市场中的每个人自由流动,在借贷和卖空上没有限制以及市场只有一个无风险利率。三、资本资产定价模型的假定三、资本资产定价模型的假定(三)最优风险资产组合R与市场组合Mn当市场达到均衡状态时,最优风险组合R中所含的各种风险证券的比例应该等于相应风险证券的市值在整个市场的总市值中所占的比例。n我们把与整个市场
9、风险证券比例一致的证券组合称为市场证券组合M。三、资本资产定价模型的假定三、资本资产定价模型的假定四、资本市场线与证券市场线四、资本市场线与证券市场线(一)资本市场线(CML)1、定义:资本市场线是无风险资产与市场证券组合M的连线,它代表着市场均衡条件下的有效边界。资本市场线(CML)E(r)E(rM)rfMCMLm四、资本市场线与证券市场线四、资本市场线与证券市场线资本市场线的方程式为:式中EP、P分别为有效组合P的期望收益率和标准差,rf为无风险利率,EM、M分别为市场组合M的期望收益率和标准差。四、资本市场线与证券市场线四、资本市场线与证券市场线2、资本市场线的含义:n有效组合的期望收益
10、率与标准差之间存在着一种简单的线性关系,它由资本市场线提供完整描述。n有效组合的期望收益率EP由以下两个部分构成:第一部分rf是无风险利率,它是即期消费的价格,通常被称为资金的时间价值;第二部分是对所承担风险的奖励,通常称为风险溢价。四、资本市场线与证券市场线四、资本市场线与证券市场线n资本市场线的斜率反映了有效组合的期望收益与风险之间的比例关系,即风险增加能获得多少期望收益奖励,或者,降低风险必须放弃多少期望收益。n该斜率可以视为风险减少的代价,通常称为风险的价格。n资本市场线实际上是均衡条件下,对有效组合的定价。四、资本市场线与证券市场线四、资本市场线与证券市场线(二)证券市场线(SML)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十 资本 资产 定价 模型
限制150内