导数与微分的定义89096.ppt
《导数与微分的定义89096.ppt》由会员分享,可在线阅读,更多相关《导数与微分的定义89096.ppt(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二章导数与微分微积分学的创始人:德国数学家 Leibniz 微分学导数导数 描述函数变化快慢微分微分 描述函数变化程度都是描述物质运动的工具(从微观上研究函数)导数思想最早由法国数学家 Ferma 在研究极值问题中提出.英国数学家 Newton第一节1.导数和微分的定义一、导数的定义一、导数的定义四、导数的几何意义四、导数的几何意义三、函数的可导性与连续性的关系三、函数的可导性与连续性的关系二、单侧导数二、单侧导数五、微分五、微分一、一、引例引例1.变速直线运动的速度变速直线运动的速度设描述质点运动位置的函数为则 到 的平均速度为而在 时刻的瞬时速度为自由落体运动2.曲线的切线斜率曲线的切线
2、斜率曲线在 M 点处的切线割线 M N 的极限位置 M T(当 时)割线 M N 的斜率切线 MT 的斜率两个问题的共性共性:瞬时速度切线斜率所求量为函数增量与自变量增量之比的极限.类似问题还有:加速度角速度线密度电流强度是速度增量与时间增量之比的极限是转角增量与时间增量之比的极限是质量增量与长度增量之比的极限是电量增量与时间增量之比的极限变变化化率率问问题题二、导数的定义二、导数的定义定义定义1.设函数在点存在,并称此极限为记作:即则称函数若的某邻域内有定义,在点处可导可导,在点的导数导数.运动质点的位置函数在 时刻的瞬时速度曲线在 M 点处的切线斜率若上述极限不存在,在点 不可导.若也称在
3、若函数在开区间 I 内每点都可导,此时导数值构成的新函数称为导函数.记作:注意注意:就说函数就称函数在 I 内可导.的导数为无穷大.由定义求导数的步骤一些基本初等函数的导数常数函数的导数幂函数的导数正(余)弦函数的导数对数函数的导数指数函数的导数常数函数的导数常数函数的导数解解注注:例例2.正弦函数的导数正弦函数的导数解解所以所以同理可得同理可得例例1.例例3.求函数解解:幂函数的导数的导数更一般地更一般地说明:说明:对一般幂函数(为常数)例如,例如,(以后将证明)对数函数的导数解解 例例4.指数函数的导数解解例例5.(见(见1-4函数连续性的例函数连续性的例3 )在点的某个右右 邻域内五、五
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 微分 定义 89096
限制150内