特征值与特征向量小结.ppt
《特征值与特征向量小结.ppt》由会员分享,可在线阅读,更多相关《特征值与特征向量小结.ppt(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Chapter 4特征值与特征向量小结特征值与特征向量小结一、内容小结一、内容小结2.相似矩阵的定义与性质相似矩阵的定义与性质3.矩阵可对角化的条件矩阵可对角化的条件1.特征值特征向量的定义与性质特征值特征向量的定义与性质4.正交矩阵的定义与性质正交矩阵的定义与性质5.实对称矩阵特征值特征向量的性质实对称矩阵特征值特征向量的性质1.特征值特征向量的定义与性质特征值特征向量的定义与性质定义定义.(1)属于不同特征值的特征向量是线性无关的属于不同特征值的特征向量是线性无关的(2)属于同一特征值的特征向量的非零线属于同一特征值的特征向量的非零线性性组合仍是属于这个特征值的特征向量组合仍是属于这个特征
2、值的特征向量(3)矩阵的特征向量总是相对于矩阵的特征矩阵的特征向量总是相对于矩阵的特征值而言的,一个特征值具有的特征向量不唯一;值而言的,一个特征值具有的特征向量不唯一;一个特征向量不能属于不同的特征值一个特征向量不能属于不同的特征值有非有非0解解.结论结论1.方阵方阵A的特征值的几何重数不超过的特征值的几何重数不超过它的代数重数它的代数重数.结论结论2.对角阵、上三角阵、下三角阵的特征值对角阵、上三角阵、下三角阵的特征值即为其主对角线上的元素即为其主对角线上的元素.结论结论3.结论结论4.结论结论5.若若 是矩阵是矩阵 A的特征值的特征值,x是是 A的属于的属于 的特征的特征向量向量,则则2
3、.相似矩阵的定义与性质相似矩阵的定义与性质3.矩阵可对角化的条件矩阵可对角化的条件定理定理1.结论结论1.若若n阶矩阵阶矩阵A有有n个互不相等的特征值个互不相等的特征值,则则A与对角阵相似与对角阵相似.结论结论2.结论结论3.实对称矩阵一定可对角化实对称矩阵一定可对角化.4.正交矩阵的定义与性质正交矩阵的定义与性质若若P为正交矩阵为正交矩阵,则线性变换则线性变换y=Px称为正交变换称为正交变换.正交变换不改变向量的长度正交变换不改变向量的长度,也不改变两向量间也不改变两向量间的内积及夹角的内积及夹角.5.实对称矩阵特征值特征向量的性质实对称矩阵特征值特征向量的性质(1)(1)实对称矩阵的特征值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 特征值 特征向量 小结
限制150内