机器学习与概率图模型中科院自动化所系列报告(王立威)25443.pptx
《机器学习与概率图模型中科院自动化所系列报告(王立威)25443.pptx》由会员分享,可在线阅读,更多相关《机器学习与概率图模型中科院自动化所系列报告(王立威)25443.pptx(122页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Machine Learning and Graphical Models王立威北京大学信息科学技术学院(Lecture I)Outline A brief overview of Machine Learning Graphical Models Representation Inference Learning2 Definition of Machine Learning:Learning from experiences.“A computer program is said to learn from experience E with respect to some class o
2、f tasks T and performance measure P,if its performance at tasks in T,as measured by P,improves with experience E.”-Tom Mitchell3“Classical”Machine Learning Tasks:Classification:spam filter,face recognition,Regression Hooks law,Keplers law,Ranking Search engine Probability(Distribution)Estimation4“Cl
3、assical”Machine Learning Algorithms Classification SVM Boosting Random Forest Bagging(Deep)Neural Networks Regression Lasso Boosting5Support Vector Machines(SVMs)SVM:the large margin classifier SVM:hinge loss minimization+regularizationBoosting Boosting:(implicit)large margin classifier Boosting:exp loss minimization(+regularization)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器 学习 概率 模型 中科院 自动化 系列 报告 王立威 25443
限制150内