2023届全国甲卷+全国乙卷高考数学复习提分复习资料专题7 统计与概率(理科)解答题30题 学生版.docx
《2023届全国甲卷+全国乙卷高考数学复习提分复习资料专题7 统计与概率(理科)解答题30题 学生版.docx》由会员分享,可在线阅读,更多相关《2023届全国甲卷+全国乙卷高考数学复习提分复习资料专题7 统计与概率(理科)解答题30题 学生版.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023届全国甲卷+全国乙卷高考数学复习提分复习资料专题7 统计与概率(理科)解答题30题1(江西省丰城中学2023届高三下学期入学考试数学(理)试题)某校在2018年11月份的高三期中考试后,随机地抽取了50名学生的数学成绩并进行了分析,结果这50名同学的成绩全部介于80分到140分之间.现将结果按如下方式分为6组,第一组,第二组,第六组,得到如图所示的频率分布直方图.(1)试估计该校数学的平均成绩(同一组中的数据用该区间的中点值作代表);(2)这50名学生中成绩在120分(含120分)以上的同学中任意抽取3人,该3人在130分(含130分)以上的人数记为,求的分布列和期望.2(广西梧州市2
2、023届高三第一次模拟测试数学(理)试题)某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:,(1)求图中的值和学生成绩的中位数;(2)从成绩低于60分的学生中随机选取2人,该2人中成绩在50分以下的人数记为,求的分布列与数学期望3(贵阳省铜仁市2023届高三下学期适应性考试(一)数学(理)试题)2022年9月3日至2022年10月8日,因为疫情,贵阳市部分高中学生只能居家学习,为了监测居家学习效果,某校在恢复正常教学后举行了一次考试,在考试中,发现学生总体成绩相较疫情前的成绩有明显下降,为了解学生成绩下降的原因,学校进行了问卷调查,从问卷中随机抽取了200份学生问卷
3、,发现其中有96名学生成绩下降,在这些成绩下降的学生中有54名学生属于“长时间使用手机娱乐”(每天使用手机娱乐2个小时以上)的学生.(1)根据以上信息,完成下面的列联表,并判断能否有99.5%把握认为“成绩下降”与“长时间使用手机娱乐”有关?长时间使用手机娱乐非长时间使用手机娱乐合计成绩下降成绩未下降合计90200(2)在被抽取的200名学生中“长时间使用手机娱乐”且“成绩未下降”的女生有12人,现从“长时间使用手机娱乐”且“成绩未下降”的学生中按性别分层抽样抽取6人,再从这6人中随机抽取3人访该,记被抽取到的3名学生中女生人数为X,求X的分布列和数学期望.参考公式:,其中.0.150.100
4、.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.8284(河南省部分名校2022-2023学年高三下学期学业质量联合检测理科数学试题)某学校组织学生观看了“天宫课堂”第二课的直播后,极大地激发了学生学习科学知识的兴趣,提高了学生学习的积极性,特别是对实验操作的研究与探究.现有某化学兴趣小组的同学在老师的指导下,开展了某项化学实验操作,为了解实验效度与实验中原料的消耗量(单位:)的关系,该校实验员随机选取了10个小组的实验数据如下表.小组编号12345678910总计实验效度6原料的消耗量15并计算得.(1)求这10个小组的实验效度
5、与实验中原料的消耗量的平均值;(2)求这10个小组的实验效度与实验中原料的消耗量的相关系数(精确到);(3)经该校实验员统计,以往一个学年各种实验中需用到原料的实验有200次左右.假设在一定的范围内,每次实验中原料的消耗量与实验效度近似成正比,其比例系数可近似为样本中相应的平均值的比值.根据要求,实验效度平均值需达到.请根据上述数据信息,估计该校本学年原料的消耗量.附:相关系数5(河南省平许济洛2022-2023学年高三第二次质量检测理科数学试题)相关统计数据显示,中国经常参与体育锻炼的人数比例为37.2%,城乡居民达到国民体质测定标准合格以上的人数比例达到90%以上某市一健身连锁机构对其会员
6、进行了统计,制作成如下两个统计图,图1为会员年龄分布图(年龄为整数),图2为会员一个月内到健身房次数分布扇形图若将会员按年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或40岁及以上)两类,将一个月内到健身房锻炼16次及以上的会员称为”健身达人”,15次及以下的会员称为“健身爱好者”,且已知在“健身达人”中有是“年轻人”(1)现从该健身连锁机构会员中随机抽取一个容量为100的样本,根据图的数据,补全下方22列联表,并判断是否有95%的把握认为“健身达人”与年龄有关?年轻人非年轻人合计健身达人健身爱好者合计附:0.100.050.0250.0100.0050.0012.7063.
7、8415.0246.6357.87910.828(2)将(1)中相应的频率作为概率,该健身连锁机构随机选取3名会员进行回访,设3名会员中既是“年轻人”又是“健身达人”的人数为随机变量X,求X的分布列和数学期望6(河南省濮阳市2022-2023学年高三下学期第一次摸底考试理科数学试题)某出租车公司为推动驾驶员服务意识和服务水平大提升,对出租车驾驶员从驾驶技术和服务水平两个方面进行了考核,并从中随机抽取了100名驾驶员,这100名驾驶员的驾驶技术与性别的22列联表和服务水平评分的频率分布直力图如下,已知所有驾驶员的服务水平评分均在区间内.(1)判断能否有95%的把握认为驾驶员的驾驶技术是否优秀与性
8、别有关;(2)从服务水平评分在区间内的驾驶员中用分层抽样的方法抽取12人,再从这12人中随机抽取4人,记X为4人中评分落在区间内的人数,求X的分布列和数学期望附:,其中0.100.0500.0102.7063.8416.6357(青海省西宁市城西区青海湟川中学2022-2023学年高三上学期一模理科数学试题)某电子产品生产商经理从众多平板电脑中随机抽取6台,检测它们充满电后的工作时长(单位:分钟),相关数据如下表所示平板电脑序号123456工作时长/分220180210220200230(1)从被抽中的6台平板电脑中随机抽出2台,设抽出的2台平板电脑充满电后工作时长小于210分钟的台数为,求随
9、机变量的分布列及数学期望;(2)下表是一台平板电脑的使用次数与当次充满电后工作时长的相关数据求该平板电脑工作时长与使用次数之间的回归直线方程,并估计该平板电脑使用第200次时充满电后的工作时长使用次数/次20406080100120140工作时长/分210206202196191188186附:,8(甘肃省靖远县第四中学2022-2023学年高三上学期第一次月考数学(理)试题)某地教体局为了解该地中学生暑假期间阅读课外读物的情况,从该地中学生中随机抽取100人进行调查,根据调查所得数据,按,分成五组,得到如图所示的频率分布直方图.(1)求频率分布直方图中m的值,并估计该地中学生暑假期间阅读课外
10、读物数量的平均值;(各组数据用该组中间值作代表)(2)若某中学生在暑假期间阅读课外读物不低于6本,则称该中学生为阅读达人,以样本各组的频率代替该组的概率,从该地中学生中随机抽取4人,记抽取到的中学生为阅读达人的人数为X,求X的分布列与数学期望.9(湖北省武汉市2022届高三下学期2月调研考试数学试题)迎接冬季奥运会期间,某市对全体高中学生举行了一次关于冬季奥运会相关知识的测试.统计人员从全市高中学生中随机抽取200名学生的成绩作为样本进行统计,测试满分为100分,统计后发现所有学生的测试成绩都在区间内,并制成如图所示的频率分布直方图.(1)估计这200名学生的平均成绩;(2)用样本频率估计总体
11、,从全市高中学生中随机抽取2名学生,记成绩在区间内的人数为,成绩在区间内的人数为,记,比较与的大小关系.10(人教A版(2019)选修第三册实战演练第七章易错疑难突破专练)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后2年内的延保维修优惠方案.方案一:交纳延保金7000元,在延保的2年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保差10000元,在延保的2年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器,现需决策在购买机器时应选择哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保2年内维修的次数
12、,得下表:维修次数0123台数5102015将频率视为概率,记X表示这2台机器超过质保期后延保的2年内共需维修的次数.(1)求X的分布列;(2)以方案一与方案二所需费用(所需延保金友维修费用之和)的期望值为决策依据,医院选择哪种延保方案更合算?11(山东省菏泽市2020-2021学年高三上学期期末数学试题)中国提出共建“一带一路”,旨在促进更多的经济增长和更大的互联互通,随着“一带一路”的发展,中亚面粉、波兰苹果、法国红酒走上了国人的餐桌,中国制造的汽车、电子元件、农产品丰富着海外市场.为拓展海外市场,某电子公司新开发一款电子产品,该电子产品的一个系统有3个电子元件组成,各个电子元件能正常工作
13、的概率为,且每个电子元件能否正常工作相互独立,若系统中有超过一半的电子元件正常工作,则可以正常工作,否则就需要维修,且维修所需费用为900元.(1)求系统需要维修的概率;(2)该电子产品共由3个系统组成,设为电子产品所需要维修的费用,求的期望;(3)为提高系统正常工作的概率,在系统内增加两个功能完全一样的其他品牌的电子元件,每个新元件正常工作的概率为,且新增元件后有超过一半的电子元件正常工作,则可以正常工作.问:满足什么条件时可以提高整个系统的正常工作概率?12(陕西省西安市长安区2023届高三下学期一模理科数学试题)某学校组织知识竞答比赛,设计了两种答题方案:方案一:先回答一道多选题,从第二
14、道开始都回答单选题;方案二:全部回答单选题.其中每道单选题答对得2分,答错得0分;多选题全部选对得3分,选对但不全得1分,有错误选项得0分.每名参与竞答的同学至多答题3道.在答题过程中得到4分或4分以上立刻停止答题.统计参与竞答的500名同学,所得结果如下表所示:男生女生选择方案一10080选择方案二200120(1)能否有的把握认为方案的选择与性别有关?(2)小明回答每道单选题的正确率为0.8;多选题完全选对的概率为0.3,选对且不全的概率为0.3.若小明选择方案一,记小明的得分为X,求X的分布列及数学期望;如果你是小明,为了获取更好的得分你会选择哪个方案?请通过计算说明理由.附:,.0.1
15、50.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82813(陕西省联盟学校2023届高三下学期第一次大联考理科数学试题)中国职业男篮CBA总决赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛就此结束.现甲、乙两支球队进行总决赛,因两队实力相当,每场比赛两队获胜的可能性均为.据以往资料统计,第一场比赛可获得门票收入400万元,以后每场比赛门票收入比上一场增加100万元.(1)求总决赛中获得门票总收入恰好为3000万元的概率;(2)设总决赛中获得门票总收入为,求的数学期望.14(河南省新未来联盟2023届高三上学
16、期12月联考理科数学试题)在高考结束后,程浩同学回初中母校看望数学老师,顺便帮老师整理初三年级学生期中考试的数学成绩,并进行统计分析,在整个年级中随机抽取了200名学生的数学成绩,将成绩分为,共6组,得到如图所示的频率分布直方图,记分数不低于90分为优秀(1)从样本中随机选取一名学生,已知这名学生的分数不低于70分,问这名学生数学成绩为优秀的概率;(2)在样本中,采取分层抽样的方法从成绩在内的学生中抽取13名,再从这13名学生中随机抽取3名,记这3名学生中成绩为优秀的人数为X,求X的分布列与数学期望15(山西省太原市2022届高三下学期模拟三理科数学试题)现有5张扑克牌,其中有3张梅花,另外2
17、张是大王、小王,进行某种扑克游戏时,需要先从5张牌中一张一张随机抽取,直到大王和小王都被抽取到,取牌结束.以表示取牌结束时取到的梅花张数,以Y表示取牌结束时剩余的梅花张数.(1)求概率;(2)写出随机变量Y的分布列,并求数学期望E(Y).16(山西省吕梁市2022届高三三模理科数学试题)足球比赛淘汰赛阶段常规比赛时间为90分钟,若在90分钟结束时进球数持平,需进行30分钟的加时赛,若加时赛仍是平局,则采用“点球大战”的方式决定胜负.“点球大战”的规则如下:两队各派5名队员,双方轮流踢点球,累计进球个数多者胜;如果在踢满5轮前,一队的进球数已多于另一队踢满5轮最多可能射中的球数,则不需要再踢(例
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届全国甲卷+全国乙卷高考数学复习提分复习资料专题7 统计与概率理科解答题30题 学生版 2023 全国 高考 数学 复习 复习资料 专题 统计 概率 理科 解答 30 学生
链接地址:https://www.taowenge.com/p-91109009.html
限制150内