2023年椭圆及其标方程精品教案.pdf
《2023年椭圆及其标方程精品教案.pdf》由会员分享,可在线阅读,更多相关《2023年椭圆及其标方程精品教案.pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 椭圆及其标准方程 一、教学目标:1知识与技能目标:(1)掌握椭圆定义和标准方程;(2)能用椭圆的定义解决一些简单的问题;2过程与方法目标:(1)通过椭圆定义的归纳和标准方程的推导,培养学生发现规律、认识规律并利用规律解决实际问题的能力;(2)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等数学思想和方法;3情感态度与价值观目标:(1)通过椭圆定义的归纳过程获得培养学生探索数学的兴趣;(2)通过标准方程的推导培养学生求简意识并能懂得欣赏数学的“简洁美”;(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。二、教学重点、难点:1
2、、重点:椭圆定义的归纳及其标准方程的推导。2、难点:椭圆标准方程的推导。三、教材与教法分析(一)、教材、学习者特征分析:本节课是圆锥曲线的第一课时。它是在学生学习了直线和圆的方学习必备 欢迎下载 程的基础上,进一步学习用坐标法研究曲线。椭圆的学习为后面研究双曲线、抛物线提供了基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容;椭圆的标准方程推导过程中,化简两个根式的方程的方法特殊,难度较大,学生初次遇到。(二)、教学方法和教学策略分析:探究式、启发式教学方法,引导学生主动参与、积极体验、自主探究,形成师生互动的教学氛围。以启发、引导为主,采用设疑的形式,逐步让学生进行探究性
3、的学习。充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点。让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题。四、教具:多媒体 直尺、细绳、钉子、笔、自制教具;五、教学过程(一)新课引入,认识椭圆 20XX年 6 月 11 日,中国的航天史又被翻开了新的一页,我国自主研制的神舟十号飞船在酒泉卫星发射中心,升上太空,在太空中探索宇宙的奥秘。这一事件,再一次向世界表明,我们中国人有信心、有能力攀登一个又一个科学高峰。“神十”升空后,准确的进入预定轨道,它运行中期的轨道是一个椭圆。在宇宙中还有许多天体的运行轨道也是椭圆,生活中也
4、有许多椭圆形的实际例子。老师和学生共同准备的有关椭圆的实物和图片,让学生从感性上认识椭圆。(演示:天体运行轨道;生活实例。由此看际问题的能力在椭圆定义的获得和其标准方程的推导过程中进一步渗透数学的简洁美通过师生生生的合作学习增强学生团队协作能力的培养增是圆锥曲线的第一时它是在学生学习了直线和圆的方学习必备欢迎下载学习必备 欢迎下载 来,若要探索浩瀚宇宙的奥秘,解决日常生活中与椭圆有关的一些实际问题,需要对椭圆这一图形进行研究。今天我们就来研究什么是椭圆及椭圆的标准方程。(二)动手实验,亲身体验 指导学生互相合作(主要在于动手),体验画椭圆的过程(课前准备直尺、细绳、钉子、笔、纸板),并以此了解
5、椭圆上的点的特征.请两组同学上台画在黑板上.注:在本环节中不急于向学生交待椭圆的定义,而是先设计一个实验,一来是为了给学生一个创造实验的机会,让学生体会椭圆上点的运动规律;二是通过实践,为进一步上升到理论做准备。先在画板上点两点 F1、F2,取一定长的细绳,把它的两端固定在画板上的 F1 、F2 两点处。【演示一】当绳长等于|F1 F2|时,使笔尖贴紧绳子慢慢移动。(1)、观察笔尖的轨迹是一个什么图形?明确:一条线段(2)、这条线段上的每一个点到 F1 、F2两点的距离和都相等吗?明确:相等,而且都等于这条绳长【演示二】当绳子长大于|F1 F2|时,用笔尖把绳子拉紧,绳子尽量贴紧画板,使笔尖在
6、画板上慢慢移动(学生亲手画),就可以在平面内画出一个椭圆(动画演示)(三)归纳定义 【引导】根据画图的过程,请同学们思考椭圆上的点有什么共同特际问题的能力在椭圆定义的获得和其标准方程的推导过程中进一步渗透数学的简洁美通过师生生生的合作学习增强学生团队协作能力的培养增是圆锥曲线的第一时它是在学生学习了直线和圆的方学习必备欢迎下载学习必备 欢迎下载 征?提问:(1)在画图的过程中,绳长变了吗?明确:没有(2)在画图过程中,绳子始终是紧绷的,那么我们画出的曲线上的点到 F1 、F2两点的距离之和始终满足什么关系?明确:与绳长相等。这说明椭圆上每一点到 F1 、F2两点的距离的和都相等,且都是绳长这一
7、定值。这就说明,椭圆上的点除了要满足到两定点 F1 、F2的距离和相等之外,这个距离和还要比|F1 F2|大。请大家回想刚才的画图过程,使笔尖贴紧绳子且贴紧黑板(表明在同一平面内),又保证绳长大于|F1 F2|,这样就在平面内画出了椭圆,所有具有这些特征的点集在一起就形成了椭圆。再次(运用几何画板的度量工具)演示椭圆上任意一点到两焦点的距离的和都相等(为定值)。对比圆的定义:平面内与定点的距离等于定长的点的集合。如果将圆的定义中的“定点”改为“两定点”,“距离”改为“距离的和”,那么平面内到两定点的距离的和等于定长的点的集合(轨迹)是什么图形?引导学生归纳出椭圆的定义。椭圆定义:平面内与两个定
8、点21,FF的距离的和等于常数(大于|21FF)的点的轨迹叫做椭圆。际问题的能力在椭圆定义的获得和其标准方程的推导过程中进一步渗透数学的简洁美通过师生生生的合作学习增强学生团队协作能力的培养增是圆锥曲线的第一时它是在学生学习了直线和圆的方学习必备欢迎下载学习必备 欢迎下载 椭圆定义的数学语言表示:1222MFMFac(四)合理建系,推导方程 过渡语言:“那有没有同学知道椭圆是怎么发现的呢?历史上又是谁最先研究的它的呢?”早在公元前四世纪,以梅内克缪斯,阿波罗尼奥斯,阿基米德等为代表的古希腊数学家就已经发现并研究椭圆,他们用一个垂直于侧棱的平面去截圆锥(如图所示)发现了椭圆。阿波罗尼奥斯的圆锥曲
9、线论更是古代世界光辉的科学成果,它将圆锥曲线的简单的一些几何性质网罗殆尽。但椭圆有什么用,它还有什么特殊的几何特征这些重要的问题当时的人们却没有答案。这样的情况持续了近两千年。直到 1637 年,笛卡儿发表了几何学,提出研究曲线的方程来研究曲线的性质!椭圆的研究才得以继续。今天我们将沿着前人的足迹,利用我们前面知识来求一下椭圆的方程。为了进一步研究椭圆的特征,现在我们一起来推导椭圆的曲线方程:上一节我们知道了求曲线方程第一步,建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点 M 的坐标。在这儿“适当”二字应如何体现?由学生自主提出建立坐标系的不同方法,教师根据学生提出的“建系”方式,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 椭圆 及其 方程 精品 教案
限制150内