2023年柱体锥体台体的表面积与体积的精品讲义.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2023年柱体锥体台体的表面积与体积的精品讲义.pdf》由会员分享,可在线阅读,更多相关《2023年柱体锥体台体的表面积与体积的精品讲义.pdf(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、枣庄三中 2012-2013 学年第一学期高一数学教学案 1.3.1 柱体、锥体、台体的表面积与体积 备课人:编号:教材分析:本课时的内容是柱体、锥体、台体的表面积与体积,是“空间几何体的表面积与体积”的一部分.该部分内容中有一些是学生熟悉的,比如正方体、长方体、圆柱、圆锥的表面积和体积.其他空间几何体一般棱柱、棱锥、棱台和圆台的表面积、体积问题是本课时要解决的。在解决这些问题的过程中,首先要对学生已有的知识进行再认识,提炼出解决问题的一般思想化归的思想,总结出一般的求解方法,在此基础上通过类比获得解决新问题的思路,通过化归解决问题,深化对化归、类比等思想方法的应用,这也是学习下一章内容时要用
2、的基本方法.课时分配:1 课时 教学目标:1、教学重点:让学生感受大量空间实物及模型,概括出柱、锥、台、球的结构特征。2、教学难点:柱、锥、台、球的结构特征的概括。3、知识点:柱体、锥体、台体的表面积和体积 4、能力点:通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法.5、教育点:培养学生空间想象能力和思维能力.6、自主探究点:让学生通对照比较,理顺柱体、锥体、台体三间的表面积和体积的关系.7、考试点:能运用公式求解,柱体、锥体和台体的体积,并且熟悉台体与柱体和锥体之间的转换关系.8、易错易混点:正确运用公式求解,柱体、锥体和台体的体积.9:拓展点:通过让学生感受几何体面积和体积的
3、求解过程,提高自己空间思维能力,增强学习的积极性.教具准备:本课时涉及到的内容比较多,而且其中很多都是再现性的,因此必须借助适当的信息技术手段提前将需要再现的图形准备好,提高课堂教学的效率.提前制作一些由一个棱柱切开成个棱锥的模具,上课后供学生操作使用.课堂模式:一、引入新课:通过学习空间几何体的结构特征、空间几何体的三视图和直观图,我们了解了空间几何体与平面图形之间的关系.从中反映出一个思想方法,即平面图形与空间几何体的互化,尤其是空间几何体问题向平面问题的转化,这种化归的思想方法将贯穿立体几何的研究过程,是一个重要的思想方法,在今后的学习中大家应该重视这一思想方法的应用.(设计意图:挖掘旧
4、知识中蕴含的数学思想方法,使得隐性知识显性化,在本课时的学习中发挥先行组织者的作用.)本课时研究的是柱体、锥体、台体的表面积与体积.空间几何体的表面积是几何体表面的面积,即几何体各个面的面积的和.空间几何体的体积是几何体所占空间的大小.二:探究新知 问题 1 (1)试着完成表 2 中你会的部分.(2)比较表 1 和表 2 中空间几何体的侧面积与表面积你完成的部分,是否蕴含着上述化归思想,并请具体给出阐释.(设计意图:通过完成()达到帮助学生复习扫清学习障碍、同时了解学生基础的目的.通过完成()进一步明确化归思想方法,为后继解决问题提供思路.)活动方式:学生独立完成,之后教师了解学生完成的情况,
5、讲评纠错.备用图:图 1 正方体及其展开图 图 2 长方体及其展开图 图 3 圆柱及其展开图 图 4 圆锥及其展开图 (2)思考如何求出任意一个棱柱、棱锥、棱台的表面积?它与哪些平面图形有关系?之后在表 2 中写出求这几类空间几何体的表面积的思路.(设计意图:巩固已有方法.具体问题是学生思维的开始,具体问题可以缩短学生进入解题状态的时间,同时通过具体问题的解决使学生有切实的感受,提供了推广的基础.)问题 2 类比上述方法,求圆台的侧面积和表面积,数据如图8 所示。图 8 lrrooO A B 圆柱圆锥的表面积和体积其他空间几何体一般棱柱棱锥棱台和圆台的表此基础上通过类比获得解决新问题的思路通过
6、化归解决问题深化对化归难点柱锥台球的结构特征的括知识点柱体锥体台体的表面积和体积能力圆台及其侧面展开图(设计意图:巩固已有方法,解决新问题.)活动方式:学生独立完成,展示讨论,形成正确的解题步骤.问 题3 将 正 方 体、长 方 体 的 体 积 公 式 分 别 改 写 为:hSaaaV底正方体23,其中h=a;hScababcV底长方体,其中h=c.据此猜想棱柱的体积公式是什么?(设计意图:根据已有知识经验获得一般的结论,培养学生合情推理的意识和习惯.)问题 4 根据圆锥体积与圆柱体积的关系,猜想棱柱的体积公式是什么?(设计意图:根据已有知识经验获得一般的结论,培养学生合情推理的意识和习惯.)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 柱体 锥体 表面积 体积 精品 讲义
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内