2023年自动控制原理复习全面汇总归纳精辟.pdf
《2023年自动控制原理复习全面汇总归纳精辟.pdf》由会员分享,可在线阅读,更多相关《2023年自动控制原理复习全面汇总归纳精辟.pdf(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 2009 年秋季 自动控制理论(一)复习指南和要求 第二章 控制系统的数学模型复习指南与要点解析 要求:根据系统结构图应用结构图的等效变换和简化或者应用信号流图与梅森公式求传递函数(方法不同,但同一系统两者结果必须相同)一、控制系统 3 种模型,即时域模型-微分方程;复域模型传递函数;频域模型频率特性。其中重点为传递函数。在传递函数中,需要理解传递函数定义(线性定常系统的传递函数是在零初始条件下,系统输出量的拉氏变换式与输入量的拉氏变换式之比)和性质。零初始条件下:如要求传递函数需拉氏变换,这句话必须的。二、结构图的等效变换和简化-实际上,也就是消去中间变量求取系统总传递函
2、数的过程。1等效原则:变换前后变量关系保持等效,简化的前后要保持一致(P45)2结构图基本连接方式只有串联、并联和反馈连接三种。如果结构图彼此交叉,看不出 3种基本连接方式,就应用移出引出点或比较点先解套,再画简。其中:引出点前移在移动支路中乘以()G s。(注意:只须记住此,其他根据倒数关系导出即可)引出点后移在移动支路中乘以1/()G s。相加点前移在移动支路中乘以1/()G s。相加点后移在移动支路中乘以()G s。注:乘以或者除以()G s,()G s到底在系统中指什么,关键看引出点或者相加点在谁的前后移动。在谁的前后移动,()G s就是谁。例 1:利用结构图化简规则,求系统的传递函数
3、 C(s)/R(s)R(s)_C(s)G1(s)G2(s)G3(s)H2(s)H1(s)_ 解法 1:1)3()Gs前面的引出点后移到3()Gs的后面(注:这句话可不写,但是必须绘制出下面的结构图,表示你如何把结构图解套的)R(s)_C(s)G1(s)G2(s)G3(s)H2(s)H1(s)_1/G3(s)2)消除反馈连接 学习必备 欢迎下载 R(s)_C(s)G1(s)H1(s)_1/G3(s)23232()()1()()()G s G sG s G s H s 3)消除反馈连接 R(s)C(s)_123232121()()()1()()()()()()G sG sG sG sG s H s
4、G sG s H s 4)得出传递函数 123121232123()()()()()1()()()()()()()()()G s Gs G sC sR sG s Gs H sGs G s HsG s Gs G s 注:可以不写你是怎么做的,但是相应的解套的那步结构图必须绘制出来。一般,考虑到考试时间限制,化简结构图只须在纸上绘制出 2-3个简化的结构图步骤即可,最后给出传递函数()()C sR s。)解法 2:1()G s后面的相加点前移到1()G s前面,并与原来左数第二个相加点交换位置,即可解套,自己试一下。注:条条大路通罗马,但是其最终传递函数()()C sR s一定相同)注:比较点和引
5、出点相邻,一般不交换位置,切忌,否则要引线)三.应用信号流图与梅森公式求传递函数 梅森公式:nkkkPP11 式中,P 总增益;n 前向通道总数;Pk 第 k 条前向通道增益;系统特征式,即fedcbaLLLLLL1 Li 回路增益;La 所有回路增益之和;LbLc 所有两个不接触回路增益乘积之和;LdLeLf 所有三个不接触回路增益乘积之和;k第 k 条前向通道的余因子式,在计算式中删除与第 k 条前向通道接触的回路。注:一般给出的是结构图,若用梅森公式求传递函数,则必须先画出信号流图。注意 2:在应用梅森公式时,一定要注意不要漏项。前向通道总数不要少,各个回路不要漏。例 2:已知系统的方框
6、图如图所示。试求闭环传递函数C(s)/R(s)(提示:应用信号流图及梅森公式)解 1):绘制信号流图 注:别忘了标注箭头表示信号流向。-G5-H1 H3 G3 G2 G1-H2 G4 R(s)C(s)G1 G2 G3 H1 G5 H3 H2 G4+-R(s)C(s)+必须相同一控制系统种模型即时域模型微分方程复域模型传递函数频域换式之比和性质零初始条件下如要求传递函数需拉氏变换这句话必须的式只有串联并联和反馈连接三种如果结构图彼此交叉看不出种基本连接学习必备 欢迎下载 2)应用梅森公式求闭环传递函数:前向通道增益 3211GGGP;342GGP;回路增益 221HGL;133212HHGGGL
7、;53GL;43431LG G H H 特征式 2212313534312521G HG G G H HGG G H HG G H;余因子式(对应各个前项通道的)511G;521G;-经验:一般余因子式不会直接等于 1,不然太简单了 闭环传递函数1243522123135252()(1)()()1G GG GGC sR sG HG G G H HGG G H 四、知道开环传递函数的定义,并会求闭环系统的传递函数 1开环传递函数,如图:()R s()C s()s()N s()H s1()G s2()G s-1()X s2()X s()B s 12()()()()()()()G s H sB sG
8、 s Gs H ss(若+)(sH)(sG()s)(sC)(sR-,则()()()()()()B sGsssGHssH 若-R(s)()G sC(s)E(s),则)()(G s H sG s-常见)2四个闭环系统的传递函数-特点分母相同,即特征方程相同 1212()()()()()1()()()G s GsC ssR sG s Gs H s(通常说的输出对输入的传递函数);212()()()()1()()()nGsC ssN sG s Gs H s 12()1()()1()()()ssR sG s Gs H s 212()()()()()1()()()nGs H sssN sG s Gs H
9、s 注:后面求稳态误差需要 必须相同一控制系统种模型即时域模型微分方程复域模型传递函数频域换式之比和性质零初始条件下如要求传递函数需拉氏变换这句话必须的式只有串联并联和反馈连接三种如果结构图彼此交叉看不出种基本连接学习必备 欢迎下载 第三章 线性系统的时域分析 要求:1)会分析系统的时域响应()c t,包括动态性能指标;2)会用劳斯判据判定系统稳定性并求使得系统稳定的参数条件;3)会根据给出的系统结构图,求出系统稳态误差,并减小或消除之。一、时域分析方法和思路:已知系统输入()r t和系统模型()s,求时域响应()c t。例 1:求一阶系统的单位阶跃响应。1)输入)(1)(ttr,则其拉氏变换
10、为ssR1)(,则 2)11111()()()111/TC ss R sTsssTsssT 3)对上式取拉氏反变换,得其响应单位阶跃信号的响应为:/()1e,0t Tsstsc tcct 注 1:ssc为稳态分量,它的变化由输入信号的形式(上例中)(1)(ttr)决定;tsc(上例中/et Ttsc)为暂态分量,由闭环传递函数的极点(上例中1sT)决定。二、线性系统稳定的充要条件是闭环特征根均需具有负实部或者说()s的极点都在在 s 平面 左 半部分。-系统稳定性是系统本来的固有特性,与外输入信号无关。1只有当系统的特征根全部具有负实部时,系统达到稳定。2如果特征根中有一个或一个以上具有正实部
11、,则这表明系统不稳定;3 如果特征根中具有一个或一个以上的零实部根,而其余的特征根均具有负实部,则脉冲响应函数趋于常数,或者趋于等幅正弦(余弦)振荡,称为临界稳定。注 2:根据如果()s极点都在 s 平面左半部分,则暂态分量tsc随时间增大而衰减为 0;如果()s极点有一个都在 s 平面右半部分,则暂态分量tsc随时间增大而发散。三、二阶系统单位阶跃响应及其欠阻尼情况下指标计算 1熟悉二阶系统单位阶跃响应的 3 个对应关系,即:不同阻尼比类型不同单位阶跃的时间响应波形图()c t-不同系统稳定性 2二阶系统欠阻尼单位阶跃响应的指标计算:欠阻尼二阶系统上升时间、峰值时间、调节时间、超调量计算(公
12、式必须牢记)21pdnt 21rdnt 21()()%100%e100%()ppc tcc,43,0.02,0.05ssnntt或 其中,阻尼角21arctan,阻尼振荡频率 21dn 例 2:20XX 年考题已知控制系统如图所示,(1)确定使闭环系统具有7.0及)/(6sradn的k值和值;+-R(s)C(s)G1 H E(s)+-)6()(1ssksG;ssH)(必须相同一控制系统种模型即时域模型微分方程复域模型传递函数频域换式之比和性质零初始条件下如要求传递函数需拉氏变换这句话必须的式只有串联并联和反馈连接三种如果结构图彼此交叉看不出种基本连接学习必备 欢迎下载(2)计算系统响应阶跃输入
13、时的超调量p和峰值时间pt。解:(1)22222)6()(nnnssksksks;23626nnkk ,则360.067k (2)21/2%exp(1)4.6%;stdp733.0/。例 3 20XX 年考题:已知控制系统如图所示,+-R(s)C(s)Gbr G H E(s)+-+)6()(ssksG;ssH)(在0)(brsG时,闭环系统响应阶跃输入时的超调量%6.4p、峰值时间733.0pt秒,确定系统的k值和值;解:(1)2222()(6)2nnnksskskss ;%4.6%0.70.7336pnt;则262nnkk 则360.067k 四、附加闭环负实零点对系统影响 具有闭环负实零点
14、时的二阶系统分析对系统的作用表现为:1.仅在过渡过程开始阶段有较大影响;2.附加合适的闭环负实零点可使系统响应速度加快,但系统的超调量略有增大;3.负实零点越接近虚轴,作用越强。五、高阶系统的时域分析-利用闭环主导极点降阶 如果在系统所有的闭环极点中,距离虚轴最近的闭环极点周围没有闭环零点,而其他闭环极点又远离虚轴,且满足 1|Re|5|Re|iss 式中,1s为主导极点;is为非主导极点。则距离虚轴最近的闭环极点所对应的响应分量随着时间的推移衰减得最慢,从而在系统的响应过程中起主导作用。一般闭环主导极点为共轭闭环主导极点或者一个实闭环主导极点。六、利用劳斯判据判定系统稳定性并求使得系统稳定的
15、参数条件。1根据特征方程:1110()0nnnnD sa sasa sa,则线性系统稳定的充要条件是劳斯表首列元素均大于零;首列系数符号改变次数与分布在 s 平面右半部的极点个数相同。2劳斯表特殊情况时,系统临界稳定或者不稳定。3 如果系统稳定,则特征方程1110()0nnnnD sa sasa sa 系数同号且不缺项;4利用劳斯判据判定系统稳定性 必须相同一控制系统种模型即时域模型微分方程复域模型传递函数频域换式之比和性质零初始条件下如要求传递函数需拉氏变换这句话必须的式只有串联并联和反馈连接三种如果结构图彼此交叉看不出种基本连接学习必备 欢迎下载 例 4:已知系统结构图,试用劳斯稳定判据确
16、定使闭环系统稳定的 k 的取值范围。ks2(1)(2)sss R(s)-C(s)解:2()(1)(2)kss sssk 整理,432()332ksssssk从高到低排列特征方程系数 列劳斯表:S4 1 3 k S3 3 2 0 S2 7/3 k S1(14-9 k)/7 0 S0 k 如果劳斯表中第一列的系数均为正值,因此,1490,14/97kk,且0k。所以014/9k。七、稳态误差以及减小或者消除稳态误差 1.稳态误差定义:11lim()lim()lim()()ssetttee tLE sLs R s 其中,误差传递函数()1(),()1()()1()()eE ssH sR sH sG
17、s H s,()1(),()1()1()eE ssH sR sG s 2终值定理法求稳态误差 如果有理函数)(ssE除了在原点有唯一的极点外,在 s 右半平面及虚轴解析,即)(ssE的极点均位于 s 左半平面(包括坐标原点),则根据终值定理可求稳态误差。00()lim()lim()()ssssesseesE sss R s 注:一般当输入是为阶跃、速度、加速度信号及其组合信号时,且系统稳定时,可应用终值定理求稳态误差。3系统型别 -定义为开环传递函数在 s 平面的积分环节个数。11(1)()(),(1)miin jjKsG s H snmsT s 其中,K:系统的开环增益(放大倍数),为型别。
18、4基于静态误差系数的稳态误差-当-输入为阶跃、速度、加速度信号及其组合信号时,静态位置误差系数 00lim()limpssKKG ss,1sspReK 静态速度误差系数 100lim()limvssKKsG ss,ssvReK 静态加速度误差系数 2200lim()limassKKs G ss,ssaReK 必须相同一控制系统种模型即时域模型微分方程复域模型传递函数频域换式之比和性质零初始条件下如要求传递函数需拉氏变换这句话必须的式只有串联并联和反馈连接三种如果结构图彼此交叉看不出种基本连接学习必备 欢迎下载 要求:根据给出系统开环传递函数和输入,能用静态误差系数能够求出稳态误差。例 5:如图
19、 _ R(s)C(s)(2)ks s 求系统当 k=10,输入为 r(t)=1.5t.时的稳态误差。解:开环传递函数 105()(2)(0.51)G ss sss,1 因为 r(t)=1.5t,则100lim()lim5vssKKsG ss,因此1.50.35ssvReK。5减小或者消除稳态误差的方法:a.增大开环放大倍数(开环增益)(在保证系统稳定的前提下)b.提高系统的型别(在保证系统稳定的前提下)。c.采用复合控制方法(要知道其原理):包括输入补偿和扰动补偿两种,都可以消除稳态误差而不影响系统稳定性。注:00lim()lim()()ssessesE sss R s若()es零点包含输入信
20、号的全部极点,则系统无稳态误差。同理,00lim()lim()()ssnnenssesE sss N s,若()ens零点包含输入信号()N s的全部极点,则系统无稳态误差。例6 2007 一复合控制系统如图所示。-R(s)1()Gs2()GsC(s)()bcGs 图中:2211212(),(),()(1)1bcKasbsG sKGsGssTsT s K1、K2、T1、T2均为已知正值。当输入量 r(t)=t2/2 时,要求系统的稳态误差为零,试确定参数 a 和 b。解 系统闭环传递函数为 21212()()()1bcG GG GC ssR sG G,代入2211212(),(),()(1)1
21、bcKasbsG sKGsGssTsT s 则3221 2122232121 212122121()(1)()()1()()1()(1)bceG GTT sTTK a sK b sE sssR sG GTT sTT sK K T sK K (只适应于单位负反馈系统)欲使系统闭环系统响应速度输入3/1)(ssR的稳态误差为 0,即 321 212223230001 21212212()(1)1lim()lim()()lim()(1)ssesssTT sTTK a sK b sesE sss R ssTT sTT sK K T sK Ks ,()es应该包含3/1)(ssR的全部极点。12221T
22、TK aK b,则22211KbKTTa 注:要求会求误差传递函数,包括扰动下的误差传递函数(一般单位反馈)。必须相同一控制系统种模型即时域模型微分方程复域模型传递函数频域换式之比和性质零初始条件下如要求传递函数需拉氏变换这句话必须的式只有串联并联和反馈连接三种如果结构图彼此交叉看不出种基本连接学习必备 欢迎下载 第四章 线性系统的根轨迹法 要求:根据给出系统结构图-求开环传递函数-得出根轨迹方程-化成标准形式判断根轨迹类型-绘制根轨迹-完成对稳定性、动态性能和稳态性能的分析。一、根轨迹定义:开环系统某一参数从 0时,闭环系统特征方程式的根(闭环极点)在s平面变化的轨迹。注:根轨迹是闭环系统特
23、征方程式的根的轨迹。二、根轨迹法中开环传递函数的标准形式零极点形式 11()()(),()mjjniikszG s H snmsp,k称为开环系统根轨迹增益 注:变化的参数以规范形式k出现在分子上。开环系统零极点形式表示,s 项的系数为 1;三、根轨迹方程从哪里来?-根据闭环系统特征方程 四、根轨迹绘制的基本规则(180 度和 0 度)(前 8 条)注:180 度和 0 度的差别主要是相角条件有关的不同。注:相角逆时针为正。注:注意绘制的主要步骤必须有因有步骤分,而且要标注上前头方向。例 1:某负反馈系统的开环传递函数为2(2)()()23k sG s H sss,试绘制系统的概略根轨迹。解:
24、要判断是 180根轨迹还是 0根轨迹,根据根轨迹方程 2(2)()()123k sG s H sss。标准型180根轨迹 1:根轨迹的起点和终点。起点112pj,212pj(有复极点有起始角),2n 终点:12z 1m。2:根轨迹的分支数。根轨迹的分支数=开环极点数。2n-可以省略此步 3:根轨迹的对称性和连续性:根轨迹连续且对称于实轴。-可以省略此步 4:根轨迹的渐近线(与实轴的交点和夹角)。1nm,与实轴的夹角0180a负实轴。如图:z1p1p2j-2-1-3.72 必须相同一控制系统种模型即时域模型微分方程复域模型传递函数频域换式之比和性质零初始条件下如要求传递函数需拉氏变换这句话必须的
25、式只有串联并联和反馈连接三种如果结构图彼此交叉看不出种基本连接学习必备 欢迎下载 5:根轨迹在实轴上的分布:(,2 是根轨迹。6:根轨迹的起始角和终止角(只有开环复极点,因此只有出射角)0011112180()()180(122)(1212)ppzppjjj 0000118054.790144.7p,利用对称性,则02144.7p 7:根轨迹与实轴的交点(根轨迹在实轴上的分离点与分离角)2(23)2ssks,则2(23)02dkdssdsdss 因此,2410ss,所以 求出123.72,0.268xxss (舍)8:根轨迹与虚轴的交点。若将sj代入特征方程2(2)1023k sss 223(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 自动控制 原理 复习 全面 汇总 归纳 精辟
限制150内