2023年根据递推公式,求数列通项公式的常用方法 全面汇总归纳全面汇总归纳.pdf





《2023年根据递推公式,求数列通项公式的常用方法 全面汇总归纳全面汇总归纳.pdf》由会员分享,可在线阅读,更多相关《2023年根据递推公式,求数列通项公式的常用方法 全面汇总归纳全面汇总归纳.pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 求递推数列通项公式的常用方法归纳 目录 一、概述 二、等差数列通项公式和前 n 项和公式 1、等差数列通项公式的推导过程 2、等差数列前 n 项和公式的推导过程 三、一般的递推数列通项公式的常用方法 1、公式法 2、归纳猜想法 3、累加法 4、累乘法 5、构造新函数法(待定系数法)6、倒数变换法 7、特征根法 8、不动点法 9、换元法 10、取对数法 11、周期法 学习必备 欢迎下载 一、概述 在高中数学课程内容中,数列作为离散函数的典型代表之一,不仅在高中数学中具有重要位置,而且,在现实生活中有着非常广泛的作用,同时,数列的教学也是培养观察、分析、归纳、猜想、逻辑推理以及
2、运用数学知识提出问题、分析问题和解决问题的必不可少的重要途径。数列这一章蕴含着多种数学思想及方法,如函数思想、方程思想,而且在基本概念、公式的教学本身也包含着丰富的数学方法,掌握这些思想方法不仅可以增进对数列概念、公式的理解,而且运用数学思想方法解决问题的过程,往往能诱发知识的迁移,使学生产生举一反三、融会贯通的解决多数列问题。在这一章主要用到了以下几中数学方法:1、不完全归纳法 不完全归纳法不但可以培养学生的数学直观,而且可以帮助学生有效的解决问题,在等差数列以及等比数列通项公式推导的过程就用到了不完全归纳法。2、倒叙相加法 等差数列前 n 项和公式的推导过程中,就根据等差数列的特点,很好的
3、应用了倒叙相加法,而且在这一章的很多问题都直接或间接地用到了这种方法。3、错位相减法 错位相减法是另一类数列求和的方法,它主要应用于求和的项之间通过一定的变形可以相互转化,并且是多个数求和的问题。等比数列的前 n 项和公式的推导就用到了这种思想方法。4、函数的思想方法 数列本身就是一个特殊的函数,而且是离散的函数,因此在解题过程中,尤其在遇到等差数列与等比数列这两类特殊的数列时,可以将它们看成一个函数,进而运用函数的性质和特点来解决问题。5、方程的思想方法 数列这一章涉及了多个关于首项、末项、项数、公差、公比、第 n 项和前 n 项和这些量的数学公式,而公式本身就是一个等式,因此,在求这些数学
4、量的过程中,可将它们看成相应的已知量和未知数,通过公式建立关于求未知量的方程,可以使解题变得清晰、明了,而且简化了解题过程。二、等差数列通项公式和前 n 项和公式 第一节:等差数列前 n 项和的推导过程 1、等差数列通项公式:(1)可以从等差数列特点及定义来引入。定义:n2时,有 ana(n1)=d,则:a2=a1d 累乘法构造新函数法待定系数法倒数变换法特征根法不动点法换元法取泛的作用同时数列的教学也是培养观察分析归纳猜想逻辑推理以及运用含着丰富的数学方法掌握这些思想方法不仅可以增进对数列概念公式的学习必备 欢迎下载 a3=a2d=a12d a4=a3d=a13d a5=a4d=a14d 猜
5、测并写出 an=?(2)采取累加 a2a1=d a3a2=d a4a3=d ana(n 1)=d 累加后,有:ana1=(n 1)d,即:an=a1(n1)d。2、等差数列前 n 项和:方法一:高斯算法(即首尾相加法)1+2+3+50+51+98+99+100=?1+100=101,2+99=101,,50+51=101,所以原式=50(1+101)=5050 则利用高斯算法,容易进行类比,过程如下:其中?.12321nnnaaaaaa.23121nnnaaaaaaqpnmaaaaqpnm则若,累乘法构造新函数法待定系数法倒数变换法特征根法不动点法换元法取泛的作用同时数列的教学也是培养观察分析
6、归纳猜想逻辑推理以及运用含着丰富的数学方法掌握这些思想方法不仅可以增进对数列概念公式的学习必备 欢迎下载 这里用到了等差数列的性质:问题是一共有多少个 ,学生自然想到对 n 取奇偶进行讨论。(1)当 n 为偶数时:(2)当 n 为奇数时:分析到这里发现21na“落单”了,似乎遇到了阻碍,此时鼓励学生不能放弃,在老师的适当引导下,不难发现,21na的角标与 角标的关系 从而得到,无论 n 取奇数还是偶数,总结:(1)类比高斯算法将首尾分组进行“配对”,发现需要对 n 取奇偶进行讨论,思路自然,容易掌握。(2)不少资料对 n 取奇数时的处理办法是,当讨论进行不下去时转向寻求其它解决办法,进而引出倒
7、序相加求和法。naa 1nnnnaaaaS1221)(21nnaanSnnnnnaaaaaS121211211)(1naa 211)(21nnnaaanS2)(2121211nnnaaaan)(21naan)(21nnaanS累乘法构造新函数法待定系数法倒数变换法特征根法不动点法换元法取泛的作用同时数列的教学也是培养观察分析归纳猜想逻辑推理以及运用含着丰富的数学方法掌握这些思想方法不仅可以增进对数列概念公式的学习必备 欢迎下载 方法二:对 n 的奇偶进行讨论有点麻烦,能否回避对 n 的讨论呢?接下来给出实际问题:伐木工人是如何快速计算堆放在木场的木头根数呢?由此引入倒序相加求和法。两式相加得:
8、总结:(1)数学学习需要最优化的学习,因此引导学生去寻求更有效的解决办法,让学生在解决问题的同时也体会到同一个问题有不同的解决办法,而我们需要的是具备高效率的方法。(2)倒序相加求和法是重要的数学思想,方法比公式本身更为重要,为以后数列求和的学习做好了铺垫。(3)在过程中体会数学的对称美。三、一般的递推数列通项公式的常用方法 一、公式法 例 1、已知无穷数列na的前n项和为nS,并且*1()nnaSnN,求na的通项公式?【解析】:1nnSa,111nnnnnaSSaa,112nnaa,又112a,12nna .反思:利用相关数列na与nS的关系:11aS,1nnnaSS(2)n 与提设条件,
9、建立递推关系,是本题求解的关键.二、归纳猜想法:由数列前几项用不完全归纳猜测出数列的通项公式,再利用数学归纳法证明其正确性,这种方法叫归纳法.例 2、已知数列na中,11a,121(2)nnaan,求数列na的通项公式.nnnaaaaS 121121aaaaSnnn)(21nnaanS)(21nnaanS累乘法构造新函数法待定系数法倒数变换法特征根法不动点法换元法取泛的作用同时数列的教学也是培养观察分析归纳猜想逻辑推理以及运用含着丰富的数学方法掌握这些思想方法不仅可以增进对数列概念公式的学习必备 欢迎下载【解析】:11a,121(2)nnaan,2121aa3,3221aa7 猜测21nna*
10、()nN,再用数学归纳法证明.(略)反思:用归纳法求递推数列,首先要熟悉一般数列的通项公式,再就是一定要用数学归纳法证明其正确性.三、累加法:利用1211()()nnnaaaaaa 求通项公式的方法称为累加法。累加法是求型如1()nnaaf n的递推数列通项公式的基本方法(()f n可求前n项和).例 3、已知无穷数列na的的通项公式是12nna ,若数列nb满足11b,112nnnbb(1)n,求数列nb的通项公式.【解析】:11b,112nnnbb(1)n,1211()()nnnbbbbbb =1+12+.+112n =1122n .反思:用累加法求通项公式的关键是将递推公式变形为1()n
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023年根据递推公式 求数列通项公式的常用方法 全面汇总归纳全面汇总归纳 2023 年根 据递推 公式 数列 常用 方法 全面 汇总 归纳

限制150内