《2023年苏教版九年级上数学知识点归纳总结全面汇总归纳.pdf》由会员分享,可在线阅读,更多相关《2023年苏教版九年级上数学知识点归纳总结全面汇总归纳.pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、word 第一章 图形与证明(二)1.1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。等腰三角形的两底角相等(简称“等边对等角”)。等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。1.2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。角平分线的性质:角平分线上的点到这个角的两边的距离相等。角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。直角三角形中,30的角所对的直角边事斜边的一半。1.3 平行四边形的性质与判定:定义:两组对
2、边分别平行的四边形是平行四边形。定理 1:平行四边形的对边相等。定理 2:平行四边形的对角相等。定理 3:平行四边形的对角线互相平分。判定从边:1 两组对边分别平行的四边形是平行四边形。2 一组对边平行且相等的四边形是平行四边形。3 两组对边分别相等的四边形是平行四边形。从角:两组对角分别相等的四边形是平行四边形。对角线:对角线互相平分的四边形是平行四边形。矩形的性质与判定:定义:有一个角的直角的平行四边形是矩形。定理 1:矩形的 4 个角都是直角。定理 2:矩形的对角线相等。定理:直角三角形斜边上的中线等于斜边的一半。判定:1 有三个角是直角的四边形是矩形。2 对角线相等的平行四边形是矩形。
3、菱形的性质与判定:定义:有一组邻边相等的平行四边形是菱形。定理 1:菱形的 4 边都相等。定理 2:菱形的对角线相互垂直,并且每一条对角线平分一组对角。判定:1 四条边都相等的四边形是菱形。2 对角线互相垂直的平行四边形是菱形。正方形的性质与判定:正方形的 4 个角都是直角,4 条边都相等,对角线相等且互相垂直平分,每一条对角线平分一组对角。正方形即是特殊的矩形,又是特殊的菱形,它具有矩形和菱形的所有性质。判定:1 有一个角是直角的菱形是正方形。2 有一组邻边相等的平行四边形是正方形。word 1.4 等腰梯形的性质与判定 定义:两腰相等的梯形叫做等腰梯形。定理 1:等腰梯形同一底上的两底角相
4、等。定理 2:等腰梯形的两条对角线相等。判定:1 在同一底上的两个角相等的梯形是等腰梯形。2 对角线相等的梯形是等腰梯形。1.5 中位线 三角形的中位线平行于第三边,并且等于第三边的一半。梯形的中位线平行于两底,并且等于两底的一半。中点四边形:依次连接一个四边形各边中点所得到的四边形称为中点四边形(中点四边形一定是平行四边形)。原四边形对角线 中点四边形 相等 菱形 互相垂直 矩形 相等且互相垂直 正方形 第二章 数据的离散程度 2.1 极差:一组数据中的最大值与最小值的差叫做极差。计算公式:极差=最大值-最小值。极差是刻画数据离散程度的一个统计量,可以反映一组数据的变化范围。一般说,极差越小
5、,则说明数据的波动幅度越小。2.2 方差 各个数据与平均数的差的平均数叫做这组数据的方差,记作 S2。巧用方差公式:1、基本公式:S2=n1(X1-X)2+(X2-X)2+(Xn-X)2 2、简化公式:S2=n1(X12+X22+Xn2)-nX2 也可写成:S2=n1(X12+X22+Xn2)-X2 3、简化:S2=n1(X12+X22+Xn2)-nX2 也可写成:S2=n1(X12+X22+Xn2)-X2 标准差:方差的算术平方根叫做这组数据的标准差,记作 S。意义:1、极差、方差和标准差都是用来描述一组数据波动情况的特征,常用来比较两组数据的波动大小,我们通常研究的是这组数据的个数相等、平
6、均数相等或比较接近的情况。2、方差较大的波动较大,方差较小的波动较小。3、方差大,标准差就大,方差小,标准差就小。因此标准差同样反映数据的波动大小。注意:对两组数据来说,极差大的那一组不一定方差大,反过来,方差大的极差也不一定大。word 第三章 二次根式 3.1 二次根式 定义:一般地,式子(a0)叫做二次根式,a 叫做被开方数。有意义条件:当 a0 时,有意义;当 a0 时,无意义。性质:1、0(a0)2、()2=a(a0)3、2=a=a(a0)a(a0)3.2 二次根式的乘除法 法则:ab=ab(a0,b 0)=(a0,b 0)化简:ab=ab(a0,b 0)=(a0,b 0)=(a0,
7、b 0)第四章 一元二次方程 4.1 概念:只含有一个未知数,且未知数的最高次数是 2 的整式方程叫做一元二次方程。一般形式是 aX2+bX+c=0(a、b、c 是常数,a0),其中 aX2称为二次项,a 称为二次项系数,bX 称为一次项,b 称为一次项系数,c 称为常数项。4.2 解法:1、直接开平方 2、配方法:先把一元二次方程变形为(X+h)2=k 的形式(其中 h,k 都是常数),如果 k0,再通过直接开平方法求出方程的解 3、公式法(求根公式):一元二次方程 aX2+bX+c=0(a0),当 b2-4ac0 时,它的根是(0)4、因式分解法 根的判别式 一元二次方程 aX2+bX+c
8、=0(a0)的根的情况可由 b2-4ac 来判定,因此 b2-4ac 叫做一元二次方程根的判别式。当 b2-4ac0 时,方程有两个不相等的实数根 当 b2-4ac=0 时,方程有两个相等的实数根 X1=X2=当 b2-4ac0 时,方程没有实数根。反之,也成立。一元二次方程应用题步骤:“设、找、列、解、验、答”第五章 中心对称图形(二)5.1 圆 定义:圆是定点的距离等于定长的点的集合。其中,定点叫做圆心,定长叫做半径。与圆有关的概念:word 1、连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。2、圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点分圆成两条弧,每条弧都叫
9、做半圆。大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。3、定点在圆上的角叫做圆心角。4、圆心相同,半径不相等的两个圆叫做同心圆。能够互相重合的两个圆叫做等圆。在同圆或等圆中,能够互相重合的弧叫做等弧。点与圆的位置关系:在平面内,点与圆有 3 中位置关系:点在圆内,点在圆上,点在圆外。如果设O 的半径为 r,点 P 到圆心 O的距离为 d,那么“点 P 在圆内 dr;点 P在圆上d=r;点 P在圆外dr”5.2 圆的对称性 圆是中心对称图形,圆心是对称中心。圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。圆心角、弧、弦之间的关系(等对等定理):在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有
10、一组量相等,那么它们所对应的其余各组量都分别相等。5.3 圆周角 概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角。定理:同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。(圆心与圆周角的位置关系分为三种情况:圆心在角的一边上;圆心在角的内部;圆心在角的外部)推论:1、直径(或半圆)所对的圆周角是直角。2、90的圆周角对的弦是直径。5.4 确定圆的条件 条件:不在同一条直线上的三个点确定一个圆。三角形的外接圆:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆。外接圆的圆心是三角形的三边的垂直平分线的交点,这个点叫做三角形的外心。这个三角形叫做圆的内接三角形 5.5 直线与圆的位置
11、关系 1、直线与圆有两个公共点时,叫做直线与圆相交。(dr)2、直线与圆有唯一的公共点,叫做直线与圆相切,这条直线叫做圆的切线,这个公共点叫做切点。(d=r)3、直线与圆没有公共点时,叫做直线与圆相离。(dr)直线与圆的位置关系可以用它们的交点的个数来区分,也可以用圆心到直线的距离与半径的大小关系来区分,它们的结果是一致的。切线的性质与判定:判定:经过半径的外端并且垂直于这条半径的直线式圆的切线。性质:(圆的切线垂直于过切点的半径)1、经过圆心且垂直于切线的直接必经过切点。2、经过切点且垂直于切线的直线必经过圆心 3、切线与圆只有一个公共点;切线与圆心的距离等于半径;切线垂直于过切点的半径。w
12、ord 内心:与三角形各边都相切的圆叫做三角形的内切圆。内切圆的圆心叫做三角形的内心,它是三角形的三条角平分线的交点。这个三角形叫做圆的外切三角形。5.6 圆与圆的位置关系 性质与判定:如果两圆的半径分别为 R 和 r,圆心距为 d,那么 两圆外离dR+r 两圆外切d=R+r 两圆相交R-rdR+r(Rr)两圆内切d=R-r(Rr)两圆内含0dR-r(Rr)连心线的性质:圆是轴对称图形,从上表中可以看出它们都是轴对称图形。沿 O1、O2所在直线(连心线)对折,发现:两圆相切,直线 O1O2必过切点;两圆相交,连心线垂直平分它们的公共弦。5.7 正多边形与圆 正多边形概念:各边相等、各角也相等的
13、多边形叫做正多边形。性质:正多边形都是对称图形,一个正 n 边形共有 n 条对称轴,没条对称轴都通过正 n 边形的中心。一个正多边形如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。如果一个正多边形是中心对称图形,那么它的中心就是对称中心。1、边数相同的正多边形相似。2、任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。友情提醒:(1)边数相同的正多边形相似,这是解与正多边形有关问题常用到的知识。(2)任何三角形都有外接圆和内切圆,但只有正三角形的外接圆和内切圆才是同心圆。过正多边形任意三个顶点的圆就是这个正多边形的外接圆。作正多边形:作半径为 R 的正 n 边形的关键是 n 等
14、分圆。这就要学习两种方法:(1)用量角器等分圆,可以作任意正多边形,这是近似作法。具体地说先计算出顶点在圆心的角的度数,即正 n 边形的圆心角为,然后依次用量角器将圆等分,顺次连接各分点,就作出正 n 边形。(2)用尺规等分圆,作正方形和正六边形。具体地说:先作出两条互相垂直的直径,将圆四等分,顺次连接各分点,就做出正方形;用圆规从圆上一点顺次截取等与半径的弦,将圆六等分,顺次连接各等分点,就作出正六边形。友情提醒:在作正多边形时,要从圆周上某一点开始连续截取等弧,否则,易产生误差。5.8 弧长及扇形的面积 圆的周长公式 C=2R,其中是圆的周长与直径的比值,称为圆周率。弧长公式:l=,其中,
15、表示 1的圆心角的倍数,它不带单位,R 为圆的半径,l 为 n的圆心角所对的弧长。扇形面积公式:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。word 圆心角为 n的扇形面积的计算公式为S扇形=。弧长为 l 的扇形面积的计算公式为S扇形=lR。公式中的 n 应理解为 1的圆心角的倍数,不带单位,同时要注意与弧长:l=公式进行比较,避免混淆。公式与三角形面积公式相类似,在 S=lR中,把扇形看成一个曲边三角形,把弧长 l 看作底,R 看作高,这样对比,有助于理解与记忆公式。5.9 圆锥侧面积和全面积 圆锥的侧面展开:圆锥的侧面展开图是扇形,这个扇形的弧长等于圆锥底面圆的周长 l=2r。这个扇形的半径等于圆锥的母线长 l母线=这个扇形的圆心角=360 这个扇形的面积等于圆锥的侧面积S侧面积=S扇形=2rl=rl 圆锥与圆柱的比较 名称 圆柱 圆锥 图形 图形的形成过程 由一个矩形旋转得到,如矩形 ADD G绕直线 AB 旋转一周 由一个直角三角形旋转得到,如 RtSOA 绕直线 SO 旋转一周 图形的组成 两个底面圆和一个侧面 一个底面圆和一个侧面 面积、体积的计算公式 S侧=2rh S全=S侧+2S底=2rh+2r2 V=r2h S侧=r S全=S侧+S底=r+r2 V=r2h word
限制150内