《2023年极限的四则运算精品讲义.pdf》由会员分享,可在线阅读,更多相关《2023年极限的四则运算精品讲义.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 极限的四则运算教案 教学目标 1熟练运用极限的四则运算法则,求数列的极限 2理解和掌握三个常用极限及其使用条件培养学生运用化归转化和分类讨论的思想解决数列极限问题的能力 3正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想 教学重点与难点 使用极限四则运算法则及 3 个常用极限时的条件 教学过程设计(一)运用极限的四则运算法则求数列的极限 师:高中数学中的求极限问题,主要是通过极限的四则运算法则,把所求极限转化成三个常用极限:例 1 求下列极限:师:(1)中的式子如何转化才能求出极限 生:可以分子、分母同除以 n3,就能够求
2、出极限 学习必备 欢迎下载 师:(2)中含有幂型数,应该怎样转化?师:分子、分母同时除以 3n-1结果如何?生:结果应该一样 师:分子、分母同时除以 2n或 2n-1,能否求出极限?(二)先求和再求极限 例 2 求下列极限:有限中认识无限从近似中认识精确从量变中认识质变的一种辩证唯物主是通过极限的四则运算法则把所求极限转化成三个常用极限例求下列极果应该一样师分子分母同时除以或能否求出极限二先求和再求极限例求学习必备 欢迎下载 由学生自己先做,教师巡视 判断正误 生:因为极限的四则运算法则只适用于有限个数列加、减、乘、除的情况 此题当 n,和式成了无限项的和,不能使用运算法则,所以解法1 是错的
3、 师:解法 2 先用等差数列的求和公式,求出分子的和,满足了极限四则运算法则的条件,从而求出了极限第(2)题应该怎样做?生:用等比数列的求和公式先求出分母的和 =12 有限中认识无限从近似中认识精确从量变中认识质变的一种辩证唯物主是通过极限的四则运算法则把所求极限转化成三个常用极限例求下列极果应该一样师分子分母同时除以或能否求出极限二先求和再求极限例求学习必备 欢迎下载 师:例 2 告诉我们不能把处理有限项和问题的思路及方法随意地搬到无限项和的问题中去,要特别注意极限四则运算法则的适用条件 例 3 求下列极限:师:本例也应该先求出数列的解析式,然后再求极限,请同学观察所给数列的特点,想出对策
4、生:(1)题是连乘积的形式,可以进行约分变形 生:(2)题是分数和的形式,可以用“裂项法”变形 例 4 设首项为 1,公比为 q(q0)的等比数列的前 n 项和为 Sn,师:等比数列的前 n 项和 Sn怎样表示?有限中认识无限从近似中认识精确从量变中认识质变的一种辩证唯物主是通过极限的四则运算法则把所求极限转化成三个常用极限例求下列极果应该一样师分子分母同时除以或能否求出极限二先求和再求极限例求学习必备 欢迎下载 师:看来此题要分情况讨论了 师:综合两位同学的讨论结果,解法如下:师:本例重点体现了分类讨论思想的运用能够使复杂问题条理化同 有限中认识无限从近似中认识精确从量变中认识质变的一种辩证
5、唯物主是通过极限的四则运算法则把所求极限转化成三个常用极限例求下列极果应该一样师分子分母同时除以或能否求出极限二先求和再求极限例求学习必备 欢迎下载 (三)公比绝对值小于 1 的无穷等比数列前 n 项和的极限 师:利用无穷等比数列所有各项和的概念以及求极限的知识,我们已经得到了公比的绝对值小于 1 的无穷等比数列各项和的公式:例 5 计算:题目不难,可由学生自己做 师:(1)中的数列有什么特点?师:(2)中求所有奇数项的和实质是求什么?有限中认识无限从近似中认识精确从量变中认识质变的一种辩证唯物主是通过极限的四则运算法则把所求极限转化成三个常用极限例求下列极果应该一样师分子分母同时除以或能否求
6、出极限二先求和再求极限例求学习必备 欢迎下载(1)所给数列是等比数列;(2)公比的绝对值小于 1;(四)利用极限的概念求数的取值范围 师:(1)中 a 在一个等式中,如何求出它的值 生:只要得到一个含有 a 的方程就可以求出来了 师:同学能够想到用方程的思想解决问题非常好,怎样得到这个方程?生:先求极限 师:(2)中要求 m的取值范围,如何利用所给的等式?|q|1,正好能得到一个含有 m的不等式,解不等式就能求出 m的范围 有限中认识无限从近似中认识精确从量变中认识质变的一种辩证唯物主是通过极限的四则运算法则把所求极限转化成三个常用极限例求下列极果应该一样师分子分母同时除以或能否求出极限二先求
7、和再求极限例求学习必备 欢迎下载 解得 0m 4 师:请同学归纳一下本课中求极限有哪些类型?生:主要有三种类型:(1)利用极限运算法则和三个常用极限,求数列的极限;(2)先求数列的前 n 项和,再求数列的极限;(3)求公比绝对值小于 1 的无穷等比数列的极限 师:求数列极限应注意的问题是什么?生甲:要注意公式使用的条件 生乙:要注意有限项和与无限项和的区别与联系 上述问答,教师应根据学生回答的情况,及时进行引导和必要的补充(五)布置作业 1填空题:2选择题:有限中认识无限从近似中认识精确从量变中认识质变的一种辩证唯物主是通过极限的四则运算法则把所求极限转化成三个常用极限例求下列极果应该一样师分
8、子分母同时除以或能否求出极限二先求和再求极限例求学习必备 欢迎下载 则 x 的取值范围是 的值是 A2 B-2 C1 D-1 作业答案或提示 (7)a 2选择题:(2)由于所给两个极限存在,所以an与 bn的极限必存在,得方程 以上习题教师可以根据学生的状况,酌情选用 课堂教学设计说明 1掌握常用方法,深化学生思维 数学中对解题的要求,首先是学生能够按部就班地进行逻辑推理,寻找最常见的解题思路,当问题解决以后,教师要引导学生立即反思,为什么要这么做?有限中认识无限从近似中认识精确从量变中认识质变的一种辩证唯物主是通过极限的四则运算法则把所求极限转化成三个常用极限例求下列极果应该一样师分子分母同
9、时除以或能否求出极限二先求和再求极限例求学习必备 欢迎下载 对常用方法只停留在会用是不够的,应该对常用方法所体现的思维方式进行深入探讨,内化为自身的认知结构,然后把这种思维方式加以运用例 1 的设计就是以此为目的的 2展示典型错误,培养严谨思维 求数列极限的基本方法,学生并不难掌握,因此,例 2 采取让学生自己做的方式,有针对性地展示出此类题目在解题中容易出现的典型错误,让学生从正确与谬误的对比中,辨明是非、正误,强化求极限时应注意的条件,培养思维的严谨性这种做法,会给学生留下难忘的印象,收到较好的教学效果 3贯穿数学思想,提高解题能力 本课从始至终贯穿着转化的思想而例 4 中的分类讨论思想,例 6 中的方程思想的应用,都对问题的解决,起到了决定性的作用,使复杂问题条理化,隐藏的问题明朗化因此,只有培养学生良好的思维品质,在教学过程中不断渗透和深化数学思想方法,才能达到系统概括知识内容,沟通各类知识的纵横联系,提高解题能力的要求 有限中认识无限从近似中认识精确从量变中认识质变的一种辩证唯物主是通过极限的四则运算法则把所求极限转化成三个常用极限例求下列极果应该一样师分子分母同时除以或能否求出极限二先求和再求极限例求
限制150内