2023年苏教版小学数学总复习精品讲义Word版2003102452.pdf
《2023年苏教版小学数学总复习精品讲义Word版2003102452.pdf》由会员分享,可在线阅读,更多相关《2023年苏教版小学数学总复习精品讲义Word版2003102452.pdf(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小 学 总复习 资 料第一部分:数与代数第一课时复习内容:数的认识(整数与小数)复习目标:1、进一步理解和掌握整数的意义,整数的读法和写法,能根据要求读、写多位数,能进行多位数的改写。2、进一步理解和掌握小数的意义及基本性质,小数的读法和写法,以及纯小数、带小数的概念,能根据要求正确地读出和写出小数,能根据小数的基本性质化简或改写小数,能正确地取小数的近似值。3、能正确地进行整数、小数的大小比较,能对数的大小进行描述,形成良好的数的概念和应用意识。复习过程:一、引入:师:小学阶段数学课中我们认识了哪些数?说说它们在生活中的应用(整数、小数、分数、百分数、成数、折扣、负数等。)师:今天我们着重来
2、复习整数和小数的有关知识。二、复习整数、小数的有关概念:1、复习整理有关知识。师:请同学们各举出几个整数例子,如果你认为你举的例子有特点,可以向同桌介绍一下。(例如:1整数的计数单位、每两个相邻的整数都相差 1,0小学阶段最小的自然数。,2、根据学生的介绍,适时回忆有关知识,进行归纳整理。1)整数的读法:从高位开始,一级一级往下读。亿级、万级都按照个级的方法读,读完后加读一个亿字或万字。每级开始或中间的0 要读,末尾的 0 不读:连续几个 0 只读一个。2)整数的写法:从高位开始,一级一级往下写。每级有四位,数位不够的用0 补足。3)小数的读法:整数部分按照整数的读法读。小数点读作“点”。小数
3、部分从左往右一位一位把数字读出来。4)小数的写法:整数部分按照整数的写法写。“点”就写小数点。小数部分从左往右一位一位写,读的是几就写几。5)小数的分类:纯小数 1 6)小数点位置移动引起小数大小变化:小数点向右移动一位、两位、三位,,小数就扩大10 倍、100 倍、1000 倍,;小数点向左移动一位、两位、三位,,小数就缩小10倍、100 倍、1000 倍,。7)整数、小数数位顺序表:8)练习。9)补充:3 里面有()个 01,()个 001。01 比 001 多()个 001。整数部分是最大的三位数,十分位上是最小的一位数,千分位上是最大的一位数,其余数位上一个单位也没有,这个数是()。把
4、 1016 先扩大 10000 倍,再缩小 10 倍,原数就()了()倍,得()。用 1、2、3 这三个数字和小数点组成一个小数,使小数个位上的数字比百分位上的数大,这个小数是()。用三个“4”和四个“0”组成三个七位:一个 0 也不读出来()只读一个0()只读两个 0()3、复习小数的性质及多位数的改写和取近似值。1、复习小数的性质。写出与 4 相等的数。4=()=()你根据了什么?在解决什么问题时用过?练习:补充:把下面各数改写成两位小数。78 9000 505 10000 76 2、复习多位数的改写和取近似值。多位数的改写。师:5040000000 末尾的 0 可以去掉吗?这么多的0 读
5、、写都不方便,有什么办法呢?(改写成用“万”或“亿”作单位的数。)改写方法:在万位或亿位后面添上小数点,去掉小数末尾,加上“万”字或“亿”字。多位数取近似值。师:当对精确程度要求不高的时候,我们还可以省略万或亿后面的尾数,你会吗?(使学生明确还可以表达为四舍五入到万或亿位。)省略尾数的方法:在万位或亿位后面添上小数点,将十分位上的数四舍五入到个位,同时舍去后面的数,加上“万”字或“亿”字。练习:补充:4500047 万38404 万58888 万86000000 9 亿492300000 50 亿492300000 49 亿三小结,提问质疑。第二课时复习内容:数的整除(一)复习目标:1、掌握整
6、除、约数、倍数、奇数、偶数、质数、合数、质因数、分解质因数、公约数、最大公约数、公倍数、最小公倍数、互质数等的概念,正确理解它们之间的关系并能正确地判断。2、掌握能被 2、3、5 整除的数的特征,并能正确地判断哪些数能被 2、3、5 整除。3、能按要求写出约数、倍数、奇数、偶数、质数、合数、质因数等,能正确地分解质因数。4、进一步发展学生的判断、推理等逻辑思维能力。复习过程:一、回忆数的整除单元的各个概念,组成知识网络,加深理解它们之间的联系和区别。1、引入:出示 110 十个自然数,师:你能从中找到一个或几个数,具有和其它数不同的特点?(例如:1、3、5、7、9是奇数。3、6、9能被 3 整
7、除,是 3 的倍数。2、3、5、7是质数。1即不是质数也不是合数。注意:学生说到某个概念时,可以说说其意义。允许选出相同的数,但说明具有的不同特点。如2、4、6、8、10 可以说都是偶数,也可以说都是2 的倍数、有公约数2,注意各概念之间的联系,及时将各概念整理成知识网络图。如说到质数、合数的意义时就可以引出约数、倍数的概念;说到能被2、3、5整除时就可以引出整除的概念,2、整理知识网络图。3、揭题师:这些数的概念都是以什么知识为基础?今天我们就来复习有关数的整除的一些知识。二、辨析概念,深入理解。师:请同学们从下面每组概念中选择一个或几个概念说一句话,可以说明概念的特点,与其它概念的联系和区
8、别。可以添加一些数据、算式的例子。1、整除和除尽例如:因为 ab=c,所以 a 能被 b 整除。除尽包含整除。能被 2、3、5 同时整除的数的末尾一定是0。2、倍数和约数。例如:1 是所有自然数的约数;一个数的倍数比它的约数大。13 的约数都是质数。1005=20,100 是倍数,5 是约数。5的倍数除了 5 以外都是合数3、质数和合数。例如:质数的约数一定有2 个,合数的约数至少有3个。合数可以写成几个质数相乘的形式,叫作分解质因数。所有自然数不是质数就是合数。质数的倍数都是合数。2 是质数中唯一的偶数。4、奇数和偶数。例如:所有的偶数的公约数是2。奇数和偶数相差1。所有的自然数不是奇数就是
9、偶数。奇数偶数=奇数。2 是偶数中唯一的质数。1)质数、质因数、分解质因数、互质数。例如:两个不同的质数一定是互质数。因为 6=23,所以 2 是质因数。只有合数能分解质因数。三、小结,提问质疑。四、综合练习。第三课时复习内容:数的整除(二)复习目标:1、进一步理解并掌握互质数、公约数、最大公约数、公倍数、最小公倍数的概念,并能正确地进行判断。2、能按要求正确地写出互质数,能正确地求公约数、最大公约数、公倍数、最小公倍数。3、进一步培养学生的归类整理能力,促进学生逻辑思维的发展。4、进一步发展学生的判断、推理等逻辑思维能力。复习过程:一、复习公约数、最大公约数和互质数的有关内容。1、引入。找出
10、下面四个数中与众不同的一个数:8 12 15 20(引导学生归纳出:其余三个数有公约数2、4,最大公约数是 4。)2、回忆公约数、最大公约数的概念及求公约数、最大公约数的方法。师:什么是公约数、最大公约数?我们怎么找几个数的公约数和最大公约数?请学生讨论方法,并以12 和 18 为例,找它们的公约数和最大公约数。3、归纳小结。方法:把每个数的约数都找出来,公有的约数就是它们的公约数,其中最大的一个是它们的最大公约数。用分解质因数或短除法或小数缩小法先求出它们的最大公约数,最大公约数的所有约数就是它们的公约数。(明确两个数的最大公约数应含有这两个数公有的质因数。)4、复习互质数。对用短除法求 1
11、2 和 18 的最大公约数的方法展示后提问:最后余下的2 和 3 是什么关系?明确互质数的几种特殊情况:两个相邻的自然数。1 和任意自然数。两个不同的质数。一个质数,一个合数,合数不是质数的倍数。二、复习公倍数、最小公倍数的有关内容。1、引入。找出下面四个数中与众不同的一个数:3 4 5 60(引导学生明确:60 是 3、4、5 的公倍数,而且是最小公倍数。)2、回忆公倍数、最小公倍数的概念及求公倍数、最小公倍数的方法。师:什么是公倍数、最小公倍数?我们怎么找几个数的公倍数和最小公倍数?请学生讨论方法,并以12 和 18 为例,找它们的公倍数和最小公倍数。3、归纳小结。方法:把每个数的倍数找出
12、若干个,公有的倍数就是它们的公倍数,其中最小的一个是它们的最小公倍数。用分解质因数或短除法或大数扩倍法先求出它们的最小公倍数,最小公倍数的所有倍数就是它们的公倍数。(明确两个数的最小公倍数应含有这两个数公有的质因数和各自独有的质因数。)4、明确求两个数的最大公约数、最小公倍数的特殊情况。师:除了用上面的方法来求两个数的最大公约数和最小公倍数,有时还能直接来判断两个数的最大公约数和最小公倍数,你能举一些例子来说明吗?完成下表的整理:两个数本质可以直接判断的情况互质关系倍数关系最大公约数含有两个数所有公有的质因数。1 小数最小公倍数不仅含有两个数所有公有的质因数,还含有各自独有的质因数。积大数三、
13、复习应用求最大公约数和最小公倍数的方法解决实际问题。1、最大公约数的应用。例:一块长方体木料,长48 厘米,宽 40 厘米,高 36 厘米。要把它锯成尽可能大的小正方体且没有剩余,小正方体的棱长是多少?可以锯成多少块?学生独立完成,可以组内讨论。反馈,说明理由:因为长方体的长正方体的棱长=一行可以锯几个长方体的宽正方体的棱长=可以锯几行长方体的高正方体的棱长=可以锯几层所以正方体的棱长是长方体的长、宽、高的公约数,同时因为要求正方体尽可能大,即棱长尽可能长,所以正方体的棱长是长方体的长、宽、高的最大公约数。归纳求三个数的最大公约数的方法。明确用短除法是求三个数的最大公约数的最普通而实用的方法。
14、2、最小公倍数的应用。例:运动会上同学们进行队列变换表演,能变换成每8 人、10 人、12人一行,人数都正好,那么至少要多少人参加?学生独立完成,可以组内讨论。反馈说明理由:因为总人数每行8 人、10 人、12 人=可以排几行。所以总人数是 8、10、12 的公倍数,同时因为问至少有多少人,即人数尽可能少,所以总人数是8、10、12 的最小公倍数。归纳求三个数的最小公倍数的方法。明确用短除法是求三个数的最小公倍数的最普通而实用的方法。3、明确求三个数的最大公约数、最小公倍数的特殊情况。师:除了用上面的方法来求三个数的最大公约数和最小公倍数,有时还能直接来判断三个数的最大公约数和最小公倍数,你能
15、举一些例子来说明吗?完成下表的整理:三个数本质可以直接判断的情况互质关系倍数关系最大公约数含有两个数所有公有的质因数。1(只要其中两个数互质即可)小数(最小数是另两个数的公约数)最小公倍数不仅含有两个数所有公有的质因数,还含有各自独有的质因数。积(必须两两互质)大数(最大数是另两个数的公倍数)四、小结,提问质疑。五、综合练习。第四课时复习内容:分数与百分数复习目标:1、进一步理解并掌握分数、百分数的意义,分数与除法的关系以及分数的基本性质。2、理解分数单位,会用分数表示除法的商,会进行通分和约分,会正确地比较分数、百分数的大小。3、会正确地进行分数、小数、百分数之间的互化,会根据分数的意义和基
16、本性质解决相关的数学问题和实际问题。复习过程:一、回忆分数、百分数的相关知识点。1、引入。师:前三节课我们一直在复习有关整数、小数的有关知识,我们还学过哪几类数?你能举例说明吗?(如:分数23,百分数:20%,成数:三成五;折扣:七五折。)2、复习分数有关知识。师:关于分数,你想说些什么?可以结合例子说明。分数的意义。把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数。(注意:单位“1”可以是一个事物,也可以是一个整体。)分母表示平均分的份数,1/分母表示分数单位。分子表示有这样的几份,表示有几个这样的分数单位。特训(四)12 分数的分类。教师给出一组分数,请学生分类。(可以小组讨论,
17、说明理由。)341861231565511572分数的基本性质。分数的分子与分母同时乘或除以一个相同的数(0 除外),分数值不变。分数与除法、比的关系。二、针对性练习。(一)有关分数的意义。1、把 5 吨重的石料用一辆汽车平均分3 次运走,每次运这批石料的()(),每次运走()()吨。学生独立解决。(建议可以用画线段图的方法来帮助理解。)讨论:这两个问题有什么联系和区别?2、进一步深入理解分数的意义。3、联系百分数,深入理解其意义。师:这两个结论能用百分数表示吗?归纳得出:百分数表示一个数是另一个数的百分之几的数,即表示两种数量间的关系。4、编题巩固。师:如果你弄明白了这类问题,请你编一道类似
18、的题目给你的同桌做一做。(可以用文字形式,也可以用图的形式。(二)有关分数的基本性质。1、师:再看前面的那一组分数,有没有比较特殊的?(明确有最简分数和非最简分数之分。)师:什么是最简分数?请将这一组数中的非最简分数化成最简分数。你的依据是什么?(明确分子与分母互质的分数是最简分数,化简非最简分数的依据是分数的基本性质。)2、做一做。47=()28=28()=4+()7+14=27-()学生独立完成后反馈,说明思考方法。(三)有关分数、小数、百分数、成数和折扣之间的互化。1、引出:老师找到了以下生活中的一些信息:联华超市自行车搞促销,按原价的45出售。幸福村去年早稻产量比前年增加320。做一件
19、学生服上装要用布34米。洗衣机“日常洗”一次衣物需用113小时。师:找一找这些信息中的分数,还能用其它形式来表示吗?按原价的 80%出售或原价打八折出售。比前年增产一成五或比前年增产15%。要用布 075 米。需用 80 分钟。明确一成、一折均表示10%,即 01;成数、折扣用在什么情况下;怎样判断一个分数能否化成有限小数(一个最简分数,分母只含质因数 2 或 5 的能化成有限小数)。2、做一做。(四)有关分数、小数大小的比较。1、比较下面各组数的大小。35和79377 和154818和1527方法:通分、约分(同时明确通分和约分的意义)、统一分子、化成小数、用“1”或“12”作标准,2、比较
20、大小的应用题。甲、乙两人加工同样多的机器零件,甲用了1112小时,乙用了1213小时,他们谁做得快?为什么?甲汽车 3 次运材料 5 吨,乙汽车 4 次运材料 6 吨。哪辆汽车的工作效率高?为什么?三、小结,提问质疑。四、综合练习。第五课时复习内容:数的运算复习目标:1、理解整数、小数、分数四则运算的意义,能正确、合理地进行整数、小数、分数的四则运算。2、掌握四则运算之间的相互关系,并能根据四则运算之间的关系解决有关的数学问题。复习过程:一、复习整数、小数、分数四则运算的意义,理解它们之间的联系。要求学生课前以四人小组为单位寻找资料完成书上P106 的四则运算的意义表格,并能举例说明。1、加法
21、:把两个数合并成一个数的运算。减法:已知两个数的和与其中一个加数,求另一个加数的运算。乘法:求几个相同加数的和的简便运算。除法:已知两个因数的积与其中一个因数,求另一个因数的运算。2、意义的拓展。一个数乘纯小数:求一个数的十分之几、百分之几、千分之几,是多少。一个数乘真分数:求一个数的几分之几是多少。3、根据此四种意义,得出减法是加法的逆运算,除法是乘法的逆运算。二、复习整数、小数、分数四则运算的计算法则(一)加法和减法。1、独立计算:270+1855 20944-394 1718+3252、反馈,判断下列方法做得对吗?3、师:这三条计算法则都是怎样要求的?(相同数位上的数对齐;小数点对齐;异
22、分母分数先化成同分母分数。)师:这三条计算法则的要求都反映了一条怎样的共同规律?能用一句话来表达吗?(相同单位上的数才能相加减。)(二)、乘法和除法。1、独立计算:14223 4182 123 请学生板演,说明计算方法。2、将题目改变为 14223 4182123,再请学生独立完成。请直接写出答案的学生说明自己的思考方法,同时明确小数乘、除法的计算法则。3、师:通过以上计算,你发现小数乘、除法和整数乘、除法有什么相同的地方和不同的地方?(相同处:小数乘法先按整数乘法的法则计算,小数除法将除数转化为整数后也按整数除法的法则计算。不同处:小数乘、除法还要在计算结果上确定小数点的位置。)4、请学生自
23、编分数乘、除法各一题计算后,想一想,分数乘、除法和整、小数乘、除法有相同的地方吗?(分数乘、除法和整、小数乘、除法的计算方法没有什么直接的相似处,但分数乘法和分数除法有联系:分数除法要转化为分数乘法进行计算,不同的是分数除法转化后是乘除数的倒数。)三、复习整数、小数、分数四则运算中的要注意的一些问题。(一)、计算中常见的问题。1、口算:7306-396 1058 36009 1517001 245 16+2381356+8744 1516452718199 2、练习。(二)、计算中的特殊情况。1、师:在计算中,往往会出现如0、1 等比较特殊的数。想一想,如果一个数 a(a0)与 1、与 0 或
24、是与本身进行运算,其结果会怎样?请用还有字母a 的式子表示出来。a 与 0 的运算:a+0=a a-0=a a0=0 0a=0 a 与 1 的运算:a1=a a1=a 1a=1a a 与本身的运算:a+a=2a a-a=0 aa=a 的平方aa=1(三)、验算。1、根据这些关系式,请学生说说对四则运算进行验算的一般方法。2、计算并验算:275 39-634814225 四、小结,提问质疑。五、综合练习。第六课时复习内容:运算定律及应用复习目标:1、通过复习,使学生进一步理解小学阶段所学习的运算定律,能应用其进行合理灵活的计算。2、进一步理解四则混合运算顺序,能正确、熟练地进行计算。3、培养合理
25、运算自觉性及良好学习习惯。复习过程:一、运算定律的复习整理。独立计算下面各题:28.4(758.4)121.25 8.69.9 2220121 31251.45 2127120111、小组交流解题方法和依据。2、全班交流。师:在运算中常用的定律有哪些?怎样分类?加法 乘法(交换律、结合律)减法 除法(运算定律)a-b-c=a-(b+c)a/b/c=a/(b*c)乘法除法(分配律)师:提高四则运算的正确率良好的学习习惯很重要,养成一看、二想、三定、四算、五查看运算的顺序、运算符号、数据特点等,想符合什么运算定律、有无简便运算、能否合理改变运算顺序使计算简便在分数小数混合的四则运算中还要考虑是化分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年苏教版 小学 数学 复习 精品 讲义 Word 2003102452
限制150内