《2023年初二数学下册知识点归纳总结全面汇总归纳,超经典.pdf》由会员分享,可在线阅读,更多相关《2023年初二数学下册知识点归纳总结全面汇总归纳,超经典.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初二数学下知识点总结 函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量 x 与 y,如果对于 x 的每一个值,y 都有唯一确定的值与它对应,那么就说 x 是自变量,y 是 x 的函数。2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3、函数的三种表示法及其优缺点(1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。(2)列表法 把自变量 x 的一系列值和函数 y 的对应
2、值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图像法:用图像表示函数关系的方法叫做图像法。4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果bkxy(k,b 是常数,k0),那么 y 叫做 x 的一次函数。特别地,当一次函数bkxy中的 b 为 0 时,kxy(k 为常数,k0)这时,y 叫做 x 的正比例函数。2、一次函数的图像 所有一次函数的图像都是一条直线。
3、3、一次函数、正比例函数图像的主要特征:一次函数bkxy的图像是经过点(0,b)的直线;正比例函数kxy 的图像是经过原点(0,0)的直线。(如下图)4.正比例函数的性质 一般地,正比例函数kxy 有下列性质:(1)当 k0 时,图像经过第一、三象限,y 随 x 的增大而增大;(2)当 k0 时,y 随 x 的增大而增大(2)当 k0 b0 y 0 x 图像经过一、二、三象限,y 随 x 的增大而增大。b0 y 0 x 图像经过一、三、四象限,y 随 x 的增大而增大。K0 y 0 x 图像经过一、二、四象限,y 随 x 的增大而减小 b0 y 0 x 图像经过二、三、四象限,y 随 x 的增
4、大而减小。注:当 b=0 时,一次函数变为正比例函数,正比例函数是一次函数的特例。四边形 1四边形的内角和与外角和定理:(1)四边形的内角和等于 360;(2)四边形的外角和等于 360.2多边形的内角和与外角和定理:(1)n 边形的内角和等于(n-2)180;(2)任意多边形的外角和等于 360.3平行四边形的性质:因为 ABCD 是平行四边形.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(4.平行四边形的判定:是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD
5、54321.5.矩形的性质:因为 ABCD 是矩形.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所(6.矩形的判定:边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321四边形 ABCD 是矩形.ABCD1234ABCDABDOCABDOCADBCADBCADBCOADBCO7菱形的性质:因为 ABCD 是菱形.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(8菱形的判定:边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321四边形四边形 ABCD 是菱形.9正方形的性质:因为 ABCD 是正方形.321分
6、对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所(CDAB(1)ABCDO(2)(3)10正方形的判定:一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321四边形 ABCD 是正方形.(3)ABCD 是矩形 又AD=AB 四边形 ABCD 是正方形 11等腰梯形的性质:因为 ABCD 是等腰梯形.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)(12等腰梯形的判定:CDBAOCDBAOABCDOCDAB对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321四边形 ABCD 是等腰梯形 (3)ABCD 是梯形且 AD
7、 BC AC=BD ABCD 四边形是等腰梯形 14三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二 定理:中心对称的有关定理 1关于中心对称的两个图形是全等形.2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.三 公式:1S
8、 菱形=21ab=ch.(a、b 为菱形的对角线,c为菱形的边长,h 为 c 边上的高)2S 平行四边形=ah.a为平行四边形的边,h 为 a 上的高)3S 梯形=21(a+b)h=Lh.(a、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)四 常识:1若 n 是多边形的边数,则对角线条数公式是:2)3n(n.2规则图形折叠一般“出一对全等,一对相似”.3如图:平行四边形、矩形、菱形、正方形的从属关系.4常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 ;仅是中心对称图形的有:平行四边形 ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 .注意:线段
9、有两条对称轴.EFDABCEDCBAABCDO平行四边形矩形菱形正方形5梯形中常见的辅助线:ABEFDECABDCABDCABDC中点中点EF FABDCABDCABDCABDC中点中点GFEEEE 平移与旋转 旋转 1.旋转的定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。2.旋转的性质:旋转后得到的图形与原图形之间有:对应点到旋转中心的距离相等,旋转角相等。中心对称 1.中心对称的定义:如果一个图形绕某一点旋转 180 度后能与另一个图形重合,那么这两个图形叫做中心对称。2.中心对称图形的定义:如果一个图形绕一点旋转 180 度后能与自身重合,这个图形叫
10、做中心对称图形。3.中心对称的性质:在中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分。轴对称 1.轴对称的定义:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对 称图形,这条直线叫做对称轴。2.轴对称图形的性质:角的平分线上的点到这个角的两边的距离相等。线段垂直平分线上的点到这条线段两个端点的距离相等。等腰三角形的“三线合一”。3.轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。图形变换 图形变换的定义:图形的平移、旋转、和轴对称统称为图形变换。一元二次方程 1、一元二次方程:概念:只含有一个未知数,且可以化为02c
11、bxax(a,b,c为常数,且0a)的整式方程叫做一元二次方程。02cbxax是一元二次方程的一般形式。其中,2ax、bx、c分别叫做一元二次方程的二次项、一次项、常数项;a、b分别叫做一元二次方程的二次项、一次项的系数。(强调:项和系数要包括前面的符号)构成一元二次方程的条件:(1)整式方程;(2)只含有一个未知数;(3)二次项系数不能为0;(4)未知数的最高次数为 2.注意事项:(1)二次项系数0a是一般形式的重要组成部分。(2)二次项、一次项和常数项都是在一般形式下定义的,判断各项系数时,必须先将方程方程化为一般形式。(3)任何一个一元二次方程均可经过整理(去括号、移项、合并同类项)均可
12、化为一般形式。2、一元二次方程的解法 直接开平方法解一元二次方程:如)0(2mmx的方程都可以用开平方的方法求出它的解,这种解法叫做直接开平方法 利用直接开平方法所解的一元二次方程的结构特点:经过整理、变形后得到等号左边是一个完全平方式,右边是一个非负数;理解直接开平方法的理论依据是平方根的定义。用配方解一元二次方程:把一个二次三项式组成完全平方式的变形过程,叫做配方,用配方法求一元二次方程的解的方法叫做配方法。配方法解一元二次方程是以配方为手段,以直接开平方为基础的一种解一元二次方程的基本方法。用配方法解一元二次方程的步骤:二次项系数化为 1:方程两边都除以二次项系数;移项:方程左边为二次项
13、和一次项,右边为常数项;配方:方成左右两边同时加上一次项系数一半的平方,使方程左边变成一个完全平方式,右边是一个常数;求解:如果右边常数是非负数,就用直接开平方法解一元二次方程。用公式法解一元二次方程:方程02cbxax)0(a的求根公式:)04(2422acbaacbbx,利用求根公式解一元二次方程的方法叫公式法。利用求根公式解一元二次方程的步骤:把方程整理为一般形式02cbxax)0(a,确定cba,的值;计算acb42的值;当042 acb时,把ba,和acb42的值代入求根公式计算,从而求出方程的解。求根公式专指一元二次方程的求根公式,只有确定方程是一元二次方程时,才可以使用 公式法是
14、解一元二次方程02cbxax)0(a的一般解法 用因式分解法解一元二次方程 利用因式分解的方法求出一元二次方程的解,这种解方程的方法叫因式分解法 因式分解法的理论依据:两个因式的积等于 0,那么这两个因式中至少有一个等于零,即0BA0A或0B。用因式分解法所解的一元二次方程的结构特点:等号一边的代数式可以做因式分解,另一边为 0.利用因式分解法解一元二次方程的步骤:将方程的右边化为一;将方程的左边分解为两个一次因式乘积的形式;令两个因式分别为 0,得到两个一元一次方程;分别解两个一元一次方程,它们的解就是原方程的解。3、一元二次方程解法的顺序:先特殊,后一般,先考虑是否用直接开平方法和因式分解
15、法解,不能用这两种方法时,再用公式法和配方法。当二次项系数为一,一次项系数为偶数时,用配方法方便。4、根的判别式 把acb42叫做一元二次根的判别式,记作=acb42,02cbxax)0(a,若方程有两个不相等的实数根0;有两个相等的实数根=0 没有实数根0 有两个实数根0(此时两根可能等,也可能不等)。5、一元二次方程的应用 列方程解应用题,应透彻理解题意,寻找等量关系。列方程时,要注意列出的方程必须满足以下三个条件:方程左右两边表示同类量;方程左右两边的同类量的单位一样;方程两边的数值相等。增长率问题公式 增长后的数=基数(1+增长率)n(n 指增长的次数)降低后的数=基数(1-增长率)n
16、(n 指降低的次数)长方体、正方体体积公式 高宽长长方体V 3(边长)正方体V 根据题的实际意义对方程的根进行取舍。方差与频数分布 知识框架图 极差 方差 用计算器计算 标准差 比较事物的有关性质 用样本估计总体的有关特征 频数 频率 频数分布表 频数分布图 数据的波动 一、极差 1、一组数据中的最大值减去最小值所得的差,叫做这组数据的极差;2、极差=数据中的最大值数据中的最小值。二、方差 1、在一组数据nxxxx,3,21中,各数据与他们的平均数x的差的平方的平均数,叫做这组数据的方差,常用2s来表示,即:;)()()(1222212xxxxxxnsn 2、方差的三种公式:基本公式:;)()
17、()(1222212xxxxxxnsn 化简公式:)(12222212xnxxxnsn 化简公式的变形公式:2222212)(1xxxxnsn 3、设化简后的新数据组21,nxxx的方差为,2s设nxxxx,3,21的方差为2s(其中方差与频数分布 数据的波动 数据的分布 为常数aniaxxii,2,1,),则22ss;4、方差的作用:用于表述一组数据波动的大小,方差越小,该数据波动越小,越稳定。三、标准差 1、方差的算数平方根叫做这组数据的标准差,即:222211xxxxxxnn;2、标准差用于描述一组数据波动的大小;3、标准差的单位与原数据的单位相同。四、方差与标准差的关系 1、2s;2、与2s的作用相同、单位不同。五、频数分布与频数分布图 1、数据的分组整理 组限、组距和组数:把一套数据分成若干个小组,累计各小组的数据个数。期中每个分数段是一个“组区间”,分数段两端的数值是“组限”,分数段的最大值与最小值的差是“组距”,分数段的个数是组数”.2、频数、频率与频数分布表、频数分布图 每个小组的数据的个称为这组数据的频数;频率:每个小组的频数与数据总个数的比值称为这组的频率;频率的计算公式:每组的频率=这组的频数/数据的总个数 各小组的频数之和等于数据总数;各小组的频数之和等于 1.
限制150内