2023年六年奥数综合练习题十一超详细解析答案工程问题.pdf
《2023年六年奥数综合练习题十一超详细解析答案工程问题.pdf》由会员分享,可在线阅读,更多相关《2023年六年奥数综合练习题十一超详细解析答案工程问题.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优秀学习资料 欢迎下载 六年奥数综合练习题十一答案(工程问题)在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是 工作量=工作效率时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子.一件工作,甲做 10 天可完成,乙做 15 天可完成.问两人合作几天可以完成?一件工作看成 1 个整体,因此可以把工作量算作 1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1 天就是一个单位,再根据基本数量关系式,得到 所需时间=工作量工作效率 =6(天)两人
2、合作需要 6 天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.为了计算整数化(尽可能用整数进行计算),如第三讲例 3 和例 8 所用方法,把工作量多设份额.还是上题,10 与 15 的最小公倍数是 30.设全部工作量为 30 份.那么甲每天完成 3 份,乙每天完成 2 份.两人合作所需天数是 30(3+2)=6(天)数计算,就方便些.2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是 1510=32.当知道了两者工作效率之比,从比例角度考虑问题,也 需时间是 因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体 1”的做法,而偏重
3、于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些.一、两个人的问题 标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.例 1 一件工作,甲做 9 天可以完成,乙做 6 天可以完成.现在甲先做了 3 天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?优秀学习资料 欢迎下载 答:乙需要做 4 天可完成全部工作.解二:9 与 6 的最小公倍数是 18.设全部工作量是 18 份.甲每天完成 2 份,乙每天完成 3 份.乙完成余下工作所需时间是 (18-2 3)3=4(天).解三:甲与乙的工作效率之比是 6 9=2 3.甲做了 3 天,相当于乙做了 2 天.乙完成余下
4、工作所需时间是 6-2=4(天).例 2 一件工作,甲、乙两人合作 30 天可以完成,共同做了 6 天后,甲离开了,由乙继续做了 40 天才完成.如果这件工作由甲或乙单独完成各需要多少天?解:共做了 6 天后,原来,甲做 24 天,乙做 24 天,现在,甲做 0 天,乙做 40=(24+16)天.这说明原来甲 24 天做的工作,可由乙做 16 天来代替.因此甲的工作效率 如果乙独做,所需时间是 如果甲独做,所需时间是 答:甲或乙独做所需时间分别是 75 天和 50 天.例 3 某工程先由甲独做 63 天,再由乙单独做 28 天即可完成;如果由甲、乙两人合作,需 48 天完成.现在甲先单独做 4
5、2 天,然后再由乙来单独完成,那么乙还需要做多少天?解:先对比如下:甲做 63 天,乙做 28 天;甲做 48 天,乙做 48 天.就知道甲少做 63-48=15(天),乙要多做 48-28=20(天),由此得出甲的 甲先单独做 42 天,比 63 天少做了 63-42=21(天),相当于乙要做 因此,乙还要做 28+28=56(天).答:乙还需要做 56 天.例 4 一件工程,甲队单独做 10 天完成,乙队单独做 30 天完成.现在两队合作,其间甲队休息了 2 天,乙队休息了 8 天(不存在两队同一天休息).问开始到完工共用了多少天时间?解一:甲队单独做 8 天,乙队单独做 2 天,共完成工
6、作量 余下的工作量是两队共同合作的,需要的天数是 在小学数学中探讨这三个数量之间关系的应用题我们都叫做工程问题举作量我们用的时间单位是天天就是一个单位再根据基本数量关系式得到算如第三讲例和例所用方法把工作量多设份额还是上题与的最小公倍数优秀学习资料 欢迎下载 2+8+1=11(天).答:从开始到完工共用了 11 天.解二:设全部工作量为 30 份.甲每天完成 3 份,乙每天完成 1 份.在甲队单独做 8 天,乙队单独做 2 天之后,还需两队合作 (30-3 8-1 2)(3+1)=1(天).解三:甲队做 1 天相当于乙队做 3 天.在甲队单独做 8 天后,还余下(甲队)10-8=2(天)工作量
7、.相当于乙队要做 23=6(天).乙队单独做 2天后,还余下(乙队)6-2=4(天)工作量.4=3+1,其中 3 天可由甲队 1 天完成,因此两队只需再合作 1 天.例 5 一项工程,甲队单独做 20 天完成,乙队单独做 30 天完成.现在他们两队一起做,其间甲队休息了 3天,乙队休息了若干天.从开始到完成共用了 16 天.问乙队休息了多少天?解一:如果 16 天两队都不休息,可以完成的工作量是 由于两队休息期间未做的工作量是 乙队休息期间未做的工作量是 乙队休息的天数是 答:乙队休息了 5 天半.解二:设全部工作量为 60 份.甲每天完成 3 份,乙每天完成 2 份.两队休息期间未做的工作量
8、是 (3+2)16-60=20(份).因此乙休息天数是 (20-3 3)2=5.5(天).解三:甲队做 2 天,相当于乙队做 3 天.甲队休息 3 天,相当于乙队休息 4.5 天.如果甲队 16 天都不休息,只余下甲队 4 天工作量,相当于乙队 6 天工作量,乙休息天数是 16-6-4.5=5.5(天).例 6 有甲、乙两项工作,张单独完成甲工作要 10 天,单独完成乙工作要 15 天;李单独完成甲工作要 8天,单独完成乙工作要 20 天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.设乙
9、的工作量为 60 份(15 与 20 的最小公倍数),张每天完成 4 份,李每天完成 3 份.8 天,李就能完成甲工作.此时张还余下乙工作(60-4 8)份.由张、李合作需要 (60-4 8)(4+3)=4(天).8+4=12(天).答:这两项工作都完成最少需要 12 天.例 7 一项工程,甲独做需 10 天,乙独做需 15 天,如果两人合作,他 要 8 天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?在小学数学中探讨这三个数量之间关系的应用题我们都叫做工程问题举作量我们用的时间单位是天天就是一个单位再根据基本数量关系式得到算如第三讲例和例所用方法把工作量多设份额还是上题与的最小公
10、倍数优秀学习资料 欢迎下载 解:设这项工程的工作量为 30 份,甲每天完成 3 份,乙每天完成 2 份.两人合作,共完成 3 0.8+2 0.9=4.2(份).因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在 8 天内完成,所以两人合作的天数是 (30-3 8)(4.2-3)=5(天).很明显,最后转化成“鸡兔同笼”型问题.例 8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时 如果这件工作始终由甲一人单独来做,需要多少小时?解:乙 6 小时单独工作完成的工作量是 乙每小时完成的工作量是 两人合作 6 小时,甲完成的工作量是 甲单独做时每小时完成的工作量 甲单独做这件
11、工作需要的时间是 答:甲单独完成这件工作需要 33 小时.这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便.例 8 就是如此.例 8 也可以整数化,当求出乙每 有一点方便,但好处不大.不必多此一举.二、多人的工程问题 我们说的多人,至少有 3 个人,当然多人问题要比 2 人问题复杂一些,但是解题的基本思路还是差不多.例 9 一件工作,甲、乙两人合作 36 天完成,乙、丙两人合作 45 天完成,甲、丙两人合作要 60 天完成.问甲一人独做需要多少天完成?解:设这件工作的工作量是 1.甲、乙、丙三人合作每天完成 在小学数学中探讨这三个数量之间关系的应用题我们
12、都叫做工程问题举作量我们用的时间单位是天天就是一个单位再根据基本数量关系式得到算如第三讲例和例所用方法把工作量多设份额还是上题与的最小公倍数优秀学习资料 欢迎下载 减去乙、丙两人每天完成的工作量,甲每天完成 答:甲一人独做需要 90 天完成.例 9 也可以整数化,设全部工作量为 180 份,甲、乙合作每天完成 5 份,乙、丙合作每天完成 4 份,甲、丙合作每天完成 3 份.请试一试,计算是否会方便些?例 10 一件工作,甲独做要 12 天,乙独做要 18 天,丙独做要 24 天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的 3 倍,再由丙接着做,丙做的天数是乙做的天数的
13、2 倍,终于做完了这件工作.问总共用了多少天?解:甲做 1 天,乙就做 3 天,丙就做 32=6(天).说明甲做了 2 天,乙做了 23=6(天),丙做 26=12(天),三人一共做了 2+6+12=20(天).答:完成这项工作用了 20 天.本题整数化会带来计算上的方便.12,18,24 这三数有一个易求出的最小公倍数 72.可设全部工作量为 72.甲每天完成 6,乙每天完成 4,丙每天完成 3.总共用了 例 11 一项工程,甲、乙、丙三人合作需要 13 天完成.如果丙休息 2 天,乙就要多做 4 天,或者由甲、乙两人合作 1 天.问这项工程由甲独做需要多少天?解:丙 2 天的工作量,相当乙
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年六年奥数 综合 练习题 十一 详细 解析 答案 工程 问题
限制150内