2023年初二数学因式分解知识点总结归纳及基础练习题.pdf
《2023年初二数学因式分解知识点总结归纳及基础练习题.pdf》由会员分享,可在线阅读,更多相关《2023年初二数学因式分解知识点总结归纳及基础练习题.pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、名师总结 优秀知识点 整式乘除与因式分解 概述 定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。分解因式与整式乘法互为逆变形。因式分解的方法 因式分解没有普遍
2、的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正(例如:-3x2+x=-x(3x-1))基本方法 提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;
3、字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。注意:把 2a2+1/2变成 2(a2+1/4)不叫提公因式 公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a2 2ab b2(a b)2;注意:能运用完全平方公式分解因式的多项
4、式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的 2 倍。立方和公式:a3+b3=(a+b)(a2-ab+b2);名师总结 优秀知识点 立方差公式:a3-b3=(a-b)(a2+ab+b2);完全立方公式:a3 3a2b3ab2 b3=(a b)3 公式:a3+b3+c3=(a+b+c)(a2+b2+c2-ab-bc-ca)例如:a2+4ab+4b2=(a+2b)2。(3)分解因式技巧 1.分解因式与整式乘法是互为逆变形。2.分解因式技巧掌握:等式左边必须是多项式;分解因式的结果必须是以乘积的形式表示;每个因式必须是整式,且每个因式的次数都必须低于原
5、来多项式的次数;分解因式必须分解到每个多项式因式都不能再分解为止。注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。3.提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式:第一步找公因式可按照确定公因式的方法先确定系数在确定字母;第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;提完公因式后,另一因式的项数与原多项式的项数相同。一、知识点总结:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单
6、项式。单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。如:bca22的 系数为2,次数为 4,单独的一个非零数的次数是 0。2、多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。如:122xaba,项有2a、ab2、x、1,二次项为2a、ab2,一次项为x,常数项为 1,各项次数分别为 2,2,1,0,系数分别为 1,-2,1,1,叫二次四项式。3、整式:单项式和多项式统称整式。注意:凡分母含有字母代数式都不是整式。也不是单项式和多项式。4、多项式按字母的升(降)幂排列:如:1223223yxyyxx 按x的升幂排列:3223221x
7、yxxyy 按x的降幂排列:1223223yxyyxx 按y的升幂排列:3223221yyxxyx 按y的降幂排列:1223223xxyyxy 决许多数学问题的有力工具因式分解方法灵活技巧性强学习这些方法与式打好基础学好它既可以培养学生的观察注意运算能力又可以提高学生有拆项和添减项法分组分解法和十字相乘法待定系数法双十字相乘法对名师总结 优秀知识点 5、同底数幂的乘法法则:mnm naaa(nm,都是正整数)同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:235()()()ababab 6、幂的乘方法则:mnnmaa)((nm,都是正整数)幂的乘方,底数不变,指数相乘。如:
8、10253)3(幂的乘方法则可以逆用:即mnnmmnaaa)()(如:23326)4()4(4 7、积的乘方法则:nnnbaab)((n是正整数)积的乘方,等于各因数乘方的积。如:(523)2zyx=5101555253532)()()2(zyxzyx 8、同底数幂的除法法则:nmnmaaa(nma,0都是正整数,且)nm 同底数幂相除,底数不变,指数相减。如:3334)()()(baababab 9、零指数和负指数;10a,即任何不等于零的数的零次方等于 1。ppaa1(pa,0是正整数),即一个不等于零的数的p次方等于这个数的p次方的倒数。如:81)21(233 10、单项式的乘法法则:单
9、项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。注意:积的系数等于各因式系数的积,先确定符号,再计算绝对值。相同字母相乘,运用同底数幂的乘法法则。只在一个单项式里含有的字母,则连同它的指数作为积的一个因式 单项式乘法法则对于三个以上的单项式相乘同样适用。单项式乘以单项式,结果仍是一个单项式。如:xyzyx3232 11、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即mcmbmacbam)(cbam,都是单项式)注意:决许多数学问题的有力工具因式分解方法灵活技巧性强学习这些方法与式打好基础学好它既可以培养学
10、生的观察注意运算能力又可以提高学生有拆项和添减项法分组分解法和十字相乘法待定系数法双十字相乘法对名师总结 优秀知识点 积是一个多项式,其项数与多项式的项数相同。运算时要注意积的符号,多项式的每一项都包括它前面的符号。在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。如:)(3)32(2yxyyxx 12、多项式与多项式相乘的法则;多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。如:)6)(5()3)(23(xxbaba 13、平方差公式:22)(bababa注意平方差公式展开只有两项 公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另
11、一项互为相反数。右边是相同项的平方减去相反项的平方。如:)(zyxzyx 14、完全平方公式:2222)(bababa 公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的 2 倍。注意:abbaabbaba2)(2)(2222 abbaba4)()(22 222)()()(bababa 222)()()(bababa 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的 2 倍。15、三项式的完全平方公式:bcacabcbacba222)(2222 16、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对
12、于只在被除式里含有的字母,则连同它的指数作为商的一个因式。注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式 如:bamba242497 17、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。即:()ambmcmmammbmmcmmabc 18、因式分解:常用方法:提公因式法、公式法、配方法、十字相乘法 决许多数学问题的有力工具因式分解方法灵活技巧性强学习这些方法与式打好基础学好它既可以培养学生的观察注意运算能力又可以提高学生有拆项和添减项法分组分解法和十字相乘法待定系数法双十字
13、相乘法对名师总结 优秀知识点 三、知识点分析:1.同底数幂、幂的运算:am an=am+n(m,n 都是正整数).(am)n=amn(m,n 都是正整数).例题 1.若6422a,则 a=;若8)3(327n,则 n=例题 2.若125512x,求xx2009)2(的值。例题 3.计算mnxyyx2322 练习 1.若32na,则na6=.2.设 4x=8y-1,且 9y=27x-1,则 x-y等于 。2.积的乘方(ab)n=anbn(n 为正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.例题 1.计算:43ppmnnmmn 3.乘法公式 平方差公式:22bababa 完全
14、平方和公式:2222bababa 完全平方差公式:2222bababa 例题 1.利用平方差公式计算:2009 200720082 例题 2.利用平方差公式计算:22007200720082006 3.(a2b3cd)(a2b3cd)5.因式分解:1.提公因式法:式子中有公因式时,先提公因式。例 1 把2105axaybybx分解因式 分析:把多项式的四项按前两项与后两项分成两组,并使两组的项按x的降幂排列,然后从两组分别提出公因式2a与b,这时另一个因式正好都是5xy,这样可以继续提取公因式 解:21052(5)(5)(5)(2)axaybybxa xyb xyxyab 说明:用分组分解法,
15、一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法本题也可以将一、四项为一组,二、三项为一组,同学不妨一试 决许多数学问题的有力工具因式分解方法灵活技巧性强学习这些方法与式打好基础学好它既可以培养学生的观察注意运算能力又可以提高学生有拆项和添减项法分组分解法和十字相乘法待定系数法双十字相乘法对名师总结 优秀知识点 例 2 把2222()()ab cdabcd分解因式 分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式 解:22222222()()ab cdabcdabcabda cdb cd 2222()()abca cdb cdabd ()()()()a
16、c bcadbd bcadbcadacbd 说明:由例 3、例 4 可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律由此可以看出运算律在因式分解中所起的作用 2.公式法:根据平方差和完全平方公式 例题 1 分解因式22925xy 3.配方法:例 1 分解因式2616xx 解:222222616233316(3)5xxxxx (35)(35)(8)(2)xxxx 说明:这种设法配成有完全平方式的方法叫做配方法,配方后将二次三项式化为两个平方式,然后用平方差公式分解当然,本题还有其它方法,请大家试验 4.十字相乘法:(1)2()xpq xp
17、q型的因式分解 这类式子在许多问题中经常出现,其特点是:(1)二次项系数是 1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和 22()()()()()xpq xpqxpxqxpqx xpq xpxp xq 因此,2()()()xpq xpqxp xq 运用这个公式,可以把某些二次项系数为 1 的二次三项式分解因式 例 1 把下列各式因式分解:(1)276xx (2)21336xx 解:(1)6(1)(6),(1)(6)7 2 76(1)(6)(1)(6)xxxxxx 决许多数学问题的有力工具因式分解方法灵活技巧性强学习这些方法与式打好基础学好它既可以培养学生的观察注意运算能
18、力又可以提高学生有拆项和添减项法分组分解法和十字相乘法待定系数法双十字相乘法对名师总结 优秀知识点 (2)3649,4913 2 1 33 6(4)(9)xxxx 说明:此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同 例 2 把下列各式因式分解:(1)2524xx (2)2215xx 解:(1)24(3)8,(3)85 2 52 4(3)(8)(3)(8)xxxxxx (2)15(5)3,(5)32 2 21 5(5)(3)(5)(3)xxxxxx 说明:此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数与一次项系数的符号相同 例
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年初 数学 因式分解 知识点 总结 归纳 基础 练习题
限制150内