2023年初中数学重点知识回顾1.pdf
《2023年初中数学重点知识回顾1.pdf》由会员分享,可在线阅读,更多相关《2023年初中数学重点知识回顾1.pdf(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 初中数学重点知识回顾 第一章 实数 考点一、实数的概念及分类 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数 无理数 无限不循环小数 负无理数 2、无理数 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率 ,或化简后含有 的数,如3+8 等;(3)有特定结构的数,如 0.1010010001等;(4)某些三角函数,如 sin60o等 考点二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零
2、),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与 b 互为相反数,则有 a+b=0,a=b,反之亦成立。2、绝对值 一个数的绝对值就是表示这个数的点与原点的距离,|a|0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则 a 0;若|a|=-a,则 a 0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。3、倒数 如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒数。考点三、平方根、算数平方根和立方根 1、平方根 如果一个数的平方等于 a,那么这个数就叫做 a 的平方根(或二次方跟)。一个数有两个平
3、方根,他们互为相反数;零的平方根是零;负数没有平方根。正数 a 的平方根记做“a”。2、算术平方根 正数 a 的正的平方根叫做 a 的算术平方根,记作“a”。正数和零的算术平方根都只有一个,零的算术平方根是零。a(a0)0a aa2 ;注意a的双重非负性:-a(a0)a0 3、立方根 如果一个数的立方等于 a,那么这个数就叫做 a 的立方根(或 a 的三次方根)。一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。学习必备 欢迎下载 注意:33aa,这说明三次根号内的负号可以移到根号外面。考点四、科学记数法和近似数 1、有效数字 一个近似数四舍五入到哪一位,就说它精确到哪一位,
4、这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。2、科学记数法 把一个数写做na10的形式,其中101 a,n 是整数,这种记数法叫做科学记数法。考点五、实数大小的比较 1、数轴 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设 a、b 是实数,,0baba ,0baba baba0(3)求商比较法:设 a、b 是两正实数,;1;1
5、;1babababababa(4)绝对值比较法:设 a、b 是两负实数,则baba。(5)平方法:设 a、b 是两负实数,则baba22。考点六、实数的运算 (做题的基础,分值相当大)1、加法交换律 abba 2、加法结合律 )()(cbacba 3、乘法交换律 baab 4、乘法结合律 )()(bcacab 5、乘法对加法的分配律 acabcba)(6、实数的运算顺序:先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。第二章 代数式 考点一、整式的有关概念 1、代数式 用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。2、单项式 只含有数字与
6、字母的积的代数式叫做单项式。注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如ba2314,这种表示就是错误的,应写成ba2313。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如cba235是 6 次单项式。考点二、多项式 1、多项式 环这一时之归纳起来有四类开方开不尽的数如等有特定意义的数如圆周做互为相反数零的相反数是零从数轴上看互为相反数的两个数所对应的数大于零负数小于零正数大于一切负数两个负数绝对值大的反而小倒数学习必备 欢迎下载 几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做
7、这个多项式的次数。单项式和多项式统称整式。用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。2、同类项 所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。(2)括号前是“”,把括号和它前面的“”号一起去掉,括号里各项都变号。4、整式的运算法则 整式的加减法:(1)去括号;(2)合并同类项。整式的乘法:),(都是
8、正整数nmaaanmnm ),(都是正整数)(nmaamnnm )()(都是正整数nbaabnnn 22)(bababa 2222)(bababa 2222)(bababa 整式的除法:)0,(anmaaanmnm都是正整数 注意:(1)单项式乘单项式的结果仍然是单项式。(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。(5)公式中的字母可以表示数,也可以表示单项式或多项式。(6)),0(1);0(10为正整数paaaaa
9、pp(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。考点三、因式分解 1、因式分解 把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。2、因式分解的常用方法(1)提公因式法:)(cbaacab(2)运用公式法:)(22bababa 222)(2bababa 环这一时之归纳起来有四类开方开不尽的数如等有特定意义的数如圆周做互为相反数零的相反数是零从数轴上看互为相反数的两个数所对应的数大于零负数小于零正数大于一切负数两个负数绝对值大的反而小倒数学习必备 欢迎下载 222)(2bababa(3)
10、分组分解法:)()()(dcbadcbdcabdbcadac(4)十字相乘法:)()(2qapapqaqpa 3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2 项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4 项式及 4 项式以上的可以尝试分组分解法分解因式(3)分解因式必须分解到每一个因式都不能再分解为止。考点四、分式 1、分式的概念 一般地,用 A、B 表示两个整式,AB 就可以表示成BA的形式,如果 B 中含有字母,式子BA就叫做分式。其中,A叫做分式的分子,
11、B 叫做分式的分母。分式和整式通称为有理式。2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。3、分式的运算法则;bcadcdbadcbabdacdcba );()(为整数nbabannn;cbacbca bdbcaddcba 考点五、二次根式 (初中数学基础,分值很大)1、二次根式:式子)0(aa叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数 a 必须是非负数。2、最简二次根式:若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年初 数学 重点 知识 回顾
限制150内