《2023年勾股定理的应用精品讲义.pdf》由会员分享,可在线阅读,更多相关《2023年勾股定理的应用精品讲义.pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 14.2 勾股定理的应用 一、单元设计总体分析 (一)教材所处的地位-教材分析:华东师大版数学七年级下册第 14 章第 2 节是学习勾股定理及其逆定理的应用。因此教学中可以结合实际情况让学生了解勾股定理及其逆定理在现实生活以及数学中的各种应用,体会勾股定理的文化价值.(二)单元教学目标:1.能熟练、灵活地应用勾股定理及其逆定理.2.会应用勾股定理及其逆定理解简单的实际问题.(三)单元教学重难点:勾股定理及其逆定理的应用.(四)单元教学策略:利用实物模型及多媒体将实际问题转化为应用勾股定理及其逆定理解直角三角形的数学问题.二、课时教学设计(一)教学目标 1知识目标 (1)了解
2、勾股定理的作用是“在直角三角形中已知两边求第三边”;而勾股逆定理的作用是由“三角形边的关系得出三角形是直角三角形”.(2)掌握勾股定理及其逆定理,运用勾股定理进行简单的长度计算.2 过程性目标 (1)让学生亲自经历卷折圆柱.(2)让学生在亲自经历卷折圆柱中认识到圆柱的侧面展开图是一个长方形(矩形).(3)让学生通过观察、实验、归纳等手段,培养其将“实际问题转化为应用勾股定理解直角三角形的数学问题”的能力.(二)教学重点、难点 教学重点:勾股定理的应用.教学难点:将实际问题转化为“应用勾股定理及其逆定理解直角三角形的数学问题”.原因分析:1.例 1 中学生因为其空间想像能力有限,很难想到蚂蚁爬行
3、的路径是什么,为此通过制作圆柱模型解决难题.2.例 2 中学生难找到要计算的具体线段.通过多媒体演示来启发学生的思维.教学突破点:突出重点的教学策略:通过回忆复习、例题、小结等,突出重点“勾股定理及其逆定理的应用”,(三)、教学过程 学习必备 欢迎下载 教学过程 设计意图 复 习 部 分 复习练习,引出课题 例 1、在 RtABC 中,两条直角边分别为 3,4,求斜边 c 的值?答案:c=5.例2、在RtABC中,一直角边分别为5,斜边为13,求另一直角边的长是多少?答案:另一直角边的长是 12.通过简单计算题的练习,帮助学生回顾勾股定理,加深定理的记忆理解,为新课作好准备 小结:在上面两个小
4、题中,我们应用了勾股定理:在RtABC中,若C90,则 c2=a2+b2.加深定理的记忆理解,突出定理的作用.新 课 讲 解 勾股定理能解决直角三角形的许多问题,因此在现实生活和数学中有着广泛的应用 例 1 如图 14.2.1,一圆柱体的底面周长为 20cm,高为 4cm,是上底面的直径一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点 C,试求出爬行的最短路程 分析:蚂蚁实际上是在圆柱的半个侧面内爬行大家用一张白纸卷折圆柱成圆柱形状,标出A、B、C、D各点,然后打开,蚂蚁在圆柱上爬行的距离,与在平面纸上的距离一样AC 之间的最短距离是什么?根据是什么?(学生回答)DCBA 根据“两点之间,线段最短”
5、,所求的最短路程就是侧面展开图矩形ASBCD 对角线AC 之长我们可以利用勾股定理计算出AC 的长。通过动手作模型,培养学生的动手、动脑能力,解决“学生空间想像能力有限,想不到蚂蚁爬行的路径”的难题,从而突破难点.由学生回答“AC 之间的最短距离及根据”,有利于帮助学生找准新旧知识的连接点,唤起与形成新知识相关的旧知识,从而使学生的原认知结构对新知识的学习具有某种“召唤力”以及数学中的各种应用体会勾股定理的文化价值二单元教学目标能熟练媒体将实际问题转化为应用勾股定理及其逆定理解直角三角形的数学问形掌握勾股定理及其逆定理运用勾股定理进行简单的长度计算过程性目学习必备 欢迎下载 DCBA 解 如图
6、,在 Rt中,底面周长的一半cm,根据勾股定理得 (提问:勾股定理)AC22BCAB 22104 292(cm)(勾股定理)答:最短路程约为cm 例 2 一辆装满货物的卡车,其外形高 2.5 米,宽 1.6 米,要开进厂门形状如图 14.2.3 的某工厂,问这辆卡车能否通过该工厂的厂门?图 14.2.3 分析由于厂门宽度足够,所以卡车能否通过,只要看当卡车位于厂门正中间时其高度是否小于CH 如图.所示,点 D 在离厂门中线 0.8米处,且 CD,与地面交于 H 解:OC 1米(大门宽度一半),OD 0.8米(卡车宽度一半)在 RtOCD中,由勾股定理得 22ODOC228.01.米,C.(米)
7、.(米)因此高度上有 0.4 米的余量,所以卡车能通过厂门 再次提问,突出勾股定理的作用,加深记忆.利用多媒体设备演示卡车通过厂门正中间时的过程(在几何画板上画出厂门的形状,用移动的矩形表示卡车,矩形的高低可调),让学生通过观察,找到需要计算的线段CH、CD 及CD 所在的直角三角形OCD,将实际问题转化为应用勾股定理解直角三角形的数学问题.以及数学中的各种应用体会勾股定理的文化价值二单元教学目标能熟练媒体将实际问题转化为应用勾股定理及其逆定理解直角三角形的数学问形掌握勾股定理及其逆定理运用勾股定理进行简单的长度计算过程性目学习必备 欢迎下载 小 结 本节课我们学习了应用勾股定理来解决实际问题
8、.在实际当中,长度计算是一个基本问题,而长度计算中应用最多、最基本的就是解直角三角形,利用勾股定理已知两边求第三边,我们要掌握好这一有力工具.课堂练习 练习 1.如图,从电杆离地面 5 米处向地面拉一条 7 米长的钢缆,求地面钢缆固定点 A到电杆底部 B的距离 (第题)2.现准备将一块形为直角三角形的绿地扩大,使其仍为直角三角形,两直角边同时扩大到原来的两倍,问斜边扩大到原来的多少倍?(四).作业:同步导学:第 4041 页,勾股定理的应用 基础训练(1)本单元分两课时,第二课时讲解例 3、例 4,例 4 中同时用到勾股定理及逆定理,重点培养学生的演绎推理能力,具体设计略.(五)、错题的估计和
9、采集:(1)错例 从电杆离地面 5 米处向地面拉一条 7 米长的钢缆,求地面钢缆固定点 A到电杆底部 B的距离 解 1:电杆垂直于地面.根据勾股定理:AB2=72 5 2 =74 得 AB=74 答:钢缆固定点 A到电杆底部 B的距离是74米.以及数学中的各种应用体会勾股定理的文化价值二单元教学目标能熟练媒体将实际问题转化为应用勾股定理及其逆定理解直角三角形的数学问形掌握勾股定理及其逆定理运用勾股定理进行简单的长度计算过程性目学习必备 欢迎下载 解 2:电杆垂直于地面.根据勾股定理:AB=72 5 2 =24 答:钢缆固定点 A到电杆底部 B的距离是 24 米.(2)原因分析:第一种错误是将直角边与斜边的位置搞错,或是记错了公式,应该按平方差计算,却按平方和计算;第二种错误将公式中要计算项的平方遗漏,这两种错误都是常见的.(3)策略分析 为防止以上错误的出现,除了讲清楚定理,还应该强调:1.定理中基本公式中的项都是平方项;2.计算直角边时需要将基本公式移项变形,按平方差计算.3.最后求边长时,需要进行开平方运算.以及数学中的各种应用体会勾股定理的文化价值二单元教学目标能熟练媒体将实际问题转化为应用勾股定理及其逆定理解直角三角形的数学问形掌握勾股定理及其逆定理运用勾股定理进行简单的长度计算过程性目
限制150内