2022八年级数学教案.docx
《2022八年级数学教案.docx》由会员分享,可在线阅读,更多相关《2022八年级数学教案.docx(60页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022八年级数学教案八年级数学教案1教学目标:1. 掌握三角形内角和定理及其推论;2. 弄清三角形按角的分类, 会按角的大小对三角形进行分类;3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态5. 通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。教学重点:三角形内角和定理及其推论。教学难点:三角形内角和定理的证明教学用具:直尺、微机教学方法:互动式,谈话法教学过程:1、创设情境,自然引入把问题作为教学的出发点,创设问题情
2、境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。问题1 三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?问题2 你能用几何推理来论证得到的关系吗?对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识“辅助线 ”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容
3、自然合理。2、设问质疑,探究尝试(1)求证:三角形三个内角的和等于让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。问题1 观察:三个内角拼成了一个什么角?问题2 此实验给我们一个什么启示?(把三角形的三个内角之和转化为一个平角)问题3 由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知
4、道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?学生回答后,电脑显示图表。(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1 直角三角形中,直角与其它两个锐角有何关系?问题2 三角形一个外角与它不相邻的两个内角有何关系?问题3 三角形一个外角与其中的一个不相邻内角有何关系?其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。这样安
5、排的目的有三点:第一,理解定理之后的延伸推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。3、三角形三个内角关系的定理及推论引导学生分析并严格书写解题过程八年级数学教案2第11章平面直角坐标系11。1平面上点的坐标第1课时平面上点的坐标(一)教学目标1。知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。2。理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。已知点的坐标,能在平面直角坐标系中描出点。3。能在方格纸中建立适当的平面直角坐标系来描述点的
6、位置。1。结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。2。学会用有序实数对和平面直角坐标系中的点来描述物体的位置。通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。重点难点认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。理解坐标系中的坐标与坐标轴上的数字之间的关系。教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位。生乙:我在第4行第7列。师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两
7、个数字确定下来。二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号。师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。谁来说说我们应该怎样表示一个物体的位置呢?生:用一个有序的实数对来表示。师:对。我们学过实数与数轴上的点是一一对应的,有序实数对是不是也可以和一个点对应起来呢?生:可以。教师在黑板上作图:我们可以在平面内画两条互相垂直、原点重合的数轴。水平的数轴叫做x轴或横轴,取向右为正方向;竖直
8、的数轴叫做y轴或纵轴,取向上为正方向;两轴交点为原点。这样就构成了平面直角坐标系,这个平面叫做坐标平面。师:有了平面直角坐标系,平面内的点就可以用一个有序实数对来表示了。现在请大家自己动手画一个平面直角坐标系。学生操作,教师巡视。教师指正学生易犯的错误。教师边操作边讲解:如图,由点P分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是5,我们就说P点的横坐标是3,纵坐标是5,我们把横坐标写在前,纵坐标写在后,(3,5)就是点P的坐标。在x轴上的点,过这点向y轴作垂线,对应的坐标是0,所以它的纵坐标就是0;在y轴上的点,过这点向x轴作垂线,对应的坐标是0,所以它的横坐标就是0
9、;原点的横坐标和纵坐标都是0,即原点的坐标是(0,0)。教师多媒体出示:师:如图,请同学们写出A、B、C、D这四点的坐标。生甲:A点的坐标是(5,4)。生乙:B点的坐标是(3,2)。生丙:C点的坐标是(4,0)。生丁:D点的坐标是(0,6)。师:很好!我们已经知道了怎样写出点的坐标,如果已知一点的坐标为(3,2),怎样在平面直角坐标系中找到这个点呢?教师边操作边讲解:在x轴上找出横坐标是3的点,过这一点向x轴作垂线,横坐标是3的点都在这条直线上;在y轴上找出纵坐标是2的点,过这一点向y轴作垂线,纵坐标是2的点都在这条直线上;这两条直线交于一点,这一点既满足横坐标为3,又满足纵坐标为2,所以这就
10、是坐标为(3,2)的点。下面请同学们在方格纸中建立一个平面直角坐标系,并描出A(2,4),B(0,5),C(2,3),D(5,6)这几个点。学生动手作图,教师巡视指导。三、深入探究,层层推进师:两个坐标轴把坐标平面划分为四个区域,从x轴正半轴开始,按逆时针方向,把这四个区域分别叫做第一象限、第二象限、第三象限和第四象限。注意:坐标轴不属于任何一个象限。在同一象限内的点,它们的横坐标的符号一样吗?纵坐标的符号一样吗?生:都一样。师:对,由作垂线求坐标的过程,我们知道第一象限内的点的横坐标的符号为+,纵坐标的符号也为+。你能说出其他象限内点的坐标的符号吗?生:能。第二象限内的点的坐标的符号为(,+
11、),第三象限内的点的坐标的符号为(,),第四象限内的点的坐标的符号为(+,)。师:很好!我们知道了一点所在的象限,就能知道它的坐标的符号。同样的,我们由点的坐标也能知道它所在的象限。一点的坐标的符号为(,+),你能判断这点是在哪个象限吗?生:能,在第二象限。四、练习新知师:现在我给出几个点,你们判断一下它们分别在哪个象限。教师写出四个点的坐标:A(5,4),B(3,1),C(0,4),D(5,0)。生甲:A点在第三象限。生乙:B点在第四象限。生丙:C点不属于任何一个象限,它在y轴上。生丁:D点不属于任何一个象限,它在x轴上。师:很好!现在请大家在方格纸上建立一个平面直角坐标系,在上面描出这些点
12、。学生作图,教师巡视,并予以指导。五、课堂小结师:本节课你学到了哪些新的知识?生:认识了平面直角坐标系,会写出坐标平面内点的坐标,已知坐标能描点,知道了四个象限以及四个象限内点的符号特征。教师补充完善。教学反思物体位置的说法和表述物体的位置等问题,学生在实际生活中经常遇到,但可能没有想到这些问题与数学的联系。教师在这节课上引导学生去想到建立一个平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力。在教学中我让学生由生活中的实例与坐标的联系感受坐标的实用性,增强了学生学习数学的兴趣。第2课时平面上点的坐标(二)教学目标进一步学习和应用平面直角坐标系,认识
13、坐标系中的图形。通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力。培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法。重点难点理解平面上的点连接成的图形,计算围成的图形的面积。不规则图形面积的求法。教学过程一、创设情境,导入新知师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来。下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,3)这三个点。学生作图。教师边操作边讲解:二、合作探究,获取新知师:现在我们把这三个点用线段连接起来,看一下得到的是什
14、么图形?生甲:三角形。生乙:直角三角形。师:你能计算出它的面积吗?生:能。教师挑一名学生:你是怎样算的呢?生:AB的长是52=3,BC的长是1(3)=4,所以三角形ABC的面积是34=6。师:很好!教师边操作边讲解:大家再描出四个点:A(1,2),B(2,1),C(2,1),D(3,2),并将它们依次连接起来看看形成的是什么图形?学生完成操作后回答:平行四边形。师:你能计算它的面积吗?生:能。教师挑一名学生:你是怎么计算的呢?生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是43=12。师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样
15、一个连接成的图形:教师多媒体出示下图:八年级数学教案3知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数能力目标:会用变化的量描述事物情感目标:回用运动的观点观察事物,分析事物重点:函数的概念难点:函数的概念教学媒体:多媒体电脑,计算器教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围教学设计:引入:信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?新课:问题:(1)如图是某日的气温变化图。 这张图告诉我们哪些信息? 这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?(2)收音机上的刻度盘的波长
16、和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数: 这表告诉我们哪些信息? 这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。范例:例1 判断下列变量之间是不是函数关系:(5) 长方形的宽一定时,其长与面积;(6) 等腰三角形的底边长与面积;(7) 某人的年龄与身高;活动1:阅读教材7页观察1. 后完成教材8页探究,利用计算器发现变量和函数的关系思
17、考:自变量是否可以任意取值例2 一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。(1) 写出表示y与x的函数关系式.(2) 指出自变量x的取值范围.(3) 汽车行驶200km时,油箱中还有多少汽油?解:(1)y=50-0.1x(2)0500(3)x=200,y=30活动2:练习教材9页练习小结:(1)函数概念(2)自变量,函数值(3)自变量的取值范围确定作业:18页:2,3,4题八年级数学教案4一、学习目标1多项式除以单项式的运算法则及其应用。2多项式除以单项式的运算算理。二、重点难点重点:多项式除
18、以单项式的运算法则及其应用。难点:探索多项式与单项式相除的运算法则的过程。三、合作学习(一)回顾单项式除以单项式法则(二)学生动手,探究新课1计算下列各式:(1)(am+bm)m;(2)(a2+ab)a;(3)(4x2y+2xy2)2xy。2提问:说说你是怎样计算的;还有什么发现吗?(三)总结法则1多项式除以单项式:先把这个多项式的每一项除以XXXXXXXXXXX,再把所得的商XXXXXX2本质:把多项式除以单项式转化成XXXXXXXXXXXXXX四、精讲精练例:(1)(12a36a2+3a)3a;(2)(21x4y335x3y2+7x2y2)(7x2y);(3)(x+y)2y(2x+y)8x
19、2x;(4)(6a3b3+8a2b4+10a2b3+2ab2)(2ab2)。随堂练习:教科书练习。五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;E、多项式除以单项式法则。八年级数学教案5教学目标:(1)理解通分的意义,理解最简公分母的
20、意义;(2)掌握分式的通分法则,能熟练掌握通分运算。教学重点:分式通分的理解和掌握。教学难点:分式通分中最简公分母的确定。教学工具:投影仪教学方法:启发式、讨论式教学过程:(一)引入(1)如何计算:由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。(2)如何计算:(3)何计算:引导学生思考,猜想如何求解?(二)新课1、类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.注意:通分保证(1)各分式与原分式相等;(2)各分式分母相等。2.通分的依据:分式的基本性质.3.通分的关键:确定几个分式的最简公分母.通常取各分母的所
21、有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.根据分式通分和最简公分母的定义,将分式通分:最简公分母为:然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:xxx通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。例1 通分:xxx分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。解: 最简公分母是12xy2,小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.解:最简公分母是10a2b2c2,由学生归纳最简公分母的思路。分式通分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年级 数学教案
限制150内