2023年第十三章轴对称超详细导学案全章.pdf
《2023年第十三章轴对称超详细导学案全章.pdf》由会员分享,可在线阅读,更多相关《2023年第十三章轴对称超详细导学案全章.pdf(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、13.1.1 轴对称综合案 学习目标:1、通过实例认识轴对称,掌握轴对称图形和关于直线成轴对称这两个概念;2、探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察,培养学生认真探究、积极思考的能力。学习重点:轴对称图形和两个图形关于某直线对称的概念及轴对称的性质 学习难点:轴对称图形和两个图形关于某直线对称的区别和联系及轴对称的性质 学法指导:1、浏览学案,带着问题自学课本;2、首先读课本 58 60 页了解内容;3、再读课文,根据下面“问题导读”划相关的概念及性 质;4、再读课文,理解轴对称图形和成轴对称的两个图形之间的区别 和联系以及轴对称的性质 5、完成课后习题;6、再读课文,
2、找出疑惑 并作出相应的标记;7、合上课本完成学案;9、交流讨论学案的内容 并作出评价。预习案 问题导读:1.什么是轴对称图形?什么是对称轴?2.关于这条直线成轴对称?什么是对称点?3.轴对称图形和成轴对称的两个图形有什么区别和联系?4.什么是垂直平分线?5.轴对称的性质是什么?预习自测:1、以下图案是轴对称图形的有 A1 个 B2 个 C3 个 D4 个 2、等腰三角形的对称轴有 A、1 条 B、3 条 C、1 条或 3 条 D、无数条 3.下面不是轴对称图形的是 。长方形 平行四边形 圆 半圆 4要使大小两个圆有无数条对称轴,应采用第 种画法。我的疑惑:1:2:预习检查组长签字:_ 探究案
3、探究一:轴对称图形与成轴对称的两个图形的区别与联系 观察上面两幅图片,议一议:轴对称图形与成轴对称的两个图形的区别与联系?区别:轴对称是说 个图形的位置关系,教师复备栏或学生笔记栏 轴对称图形是说 个具有特殊形状的图形。联系:都能沿着某条直线 。这条直线是_。跟踪训练 1:1标出以下图形中的对称点 探究二:轴对称的性质 如图,ABC和ABC关于直线 MN对称,点 A、B、C分别是点 A、B、C的对称点,线段 AA、BB、CC 与直线 MN有什么关系?1设 AA 交对称轴 MN于点 P,将ABC和 ABC沿 MN折叠后,点 A与 A重合吗?于是有 PA ,MPA 度 2对于其他的对应点,如点 B
4、、B,C、C也 有 类似的情况吗?3那么 MN与线段 AA,BB,CC 的连线有什么关系呢?归纳:1、垂直平分线的定义:_,叫做这条线段的垂直平分线 2、轴对称的性质:如果两个图形关于某条直线对称,那么 是任何一对对应点 所连线段的 类似地,轴对称图形的对称轴,是_的垂直平分线。跟踪训练 2:作出以下图形的对称轴。轻松检测 1.以下图形中不是轴对称图形的是 A B C D 2.以下英文字母属于轴对称图形的是 A、N B、S C、L D、E 3以下各时刻是轴对称图形的为 A、B、C、D、4.在镜中看到的一串数字是“309087 ”,则这串数字是 。5.以下图形中对称轴最多的是 ()A、圆 B、正
5、方形 C、等腰三角形 D、线段 *6.求右图阴影部分的面积。单位:厘米 反思总结:教师复备栏或学生笔记栏 13.1.2 线段垂直平分线性质定理探究案 学习目标:1、通过动手试验掌握线段的垂直平分线的性质与判定 2、理解线段垂直平分线与对称轴的关系 3、掌握线段垂直平分线的性质及判定 学习重点:线段垂直平分线的性质与判定的理解 学习难点:运用线段垂直平分线性质及判定解决问题。学法指导:1、温习前面所学的知识完成知识链接;2、读课本 61 页 了解内容;3、再读课文,划出线段垂直平分线性质定理与判定定理 4.再读课文,理解线段垂直平分线性质定理与判定定理;5、再读课文,理解并推导出线段垂直平分线性
6、质定理及判定定理;6、再读课文,找 出疑惑并作出相应的标记;7、再读课文,做课后的习题;8、完成学案;9、交流讨论学案的内容并作出评价。一、知识链接:如图,四边形 ABCD 与四边形 EFGH 关于 MN对称。1A、B、C、D的对称点分别是 ,线段 AD、AB的对应线段 分别是 ,CD=,CBA=,ADC=2连接 AE、BF,AE与BF平行吗?为什么?3对称轴 MN与线段 AE的关系?二、探究点一:线段垂直平分线性质定理 如图,直线 l 垂直平分线段 AB,P1,P2,P3,是 l 上的点,请猜想点 P1,P2,P3,到点A 与点B 的距 离之间的数量关系并证明你的猜想 猜想:已知:直线 l
7、垂直平分_,垂足为 O,点 C在直线 l 上 求证:AC=_ 证明:学习 评价 自 我 评 价 小 组 评 价 教 师 评 价 综 合 评 价 优 良 及 差 优 良 及 差 优 良 及 差 优 良 及 差 C 教师复备栏或学生笔记栏 l O B A P3 P1 P2 DECBAO线段垂直平分线性质定理:几何语言:跟踪训练:如右图所示,直线 MN和 DE分别是线段 AB、BC的垂直平分线,它们交于 P点,请问 PA和 PC 相等吗?为什么?三、探究点二:线段垂直平分线判定定理 你能写出线段垂直平分线的性质定理的逆命题吗?小帅同学为验证逆命题已经做出了一些步骤,请你帮他补充完整:已知:_=_ 求
8、证:_在 AB 的_线上 P A B 判定定理:几何语言:跟踪训练:.已知:如图ABC 中,边 AB,BC 的垂直平分线相交于点 P 求证:点 P 在 AC 的垂直平分线上 归纳:四、随堂检测:1:如图,AD BC,BD=DC,点 C 在 AE 的垂直平分线上,AB,AC,CE 的长度有什么关系?AB+BD 与 DE 有什么关系?2:已知:E是AOB的平分线上一点,ECOA,EDOB,垂足分 别为C、D求证:OE是CD 的垂直平分线 教师复备栏或学生笔记栏 BACDE *3 如图,在ABC 中,BC=8,AB 的中垂线 交 BC 于 D,AC 的中垂线交 BC 与 E,则ADE 的周长等 于多
9、少 五、反思总结 13.1.2 线段垂直平分线2综合案 学习目标:利用轴对称的性质和线段垂直平分线的性质和判定画图并解决实例。学习重点:利用轴对称的性质和线段垂直平分线的性质和判定画图并解决实例。学习难点:过直线外一点作直线的垂线的尺规作图 学法指导:1、浏览学案,带着问题自学课本;2、首先读课本 62 63 页了解内容;3、再读课文,根据下面“问题导读”划相关的作图步骤;4、完成课后习题;5、再读课文,找出疑惑并作出相应的标记;6、合上课本完成学案;7、交流讨论学案的内容并作出评价。预习案 复习稳固 1、如下图,有 A、B、C三个居民小区的位置成三角形,现决定在 三个小区之间修建一个购物超,
10、使超市到三个小区的距离相等,则超市应建在 A.在 AC、BC两边高线的交点处 B.在 AC、BC两边中线的交点处 C.在 AC、BC两边垂直平分线的交点处 D.在 A、B两内角平分线的交点处 2、作AOB的角平分线 A O B 问题导读:6.如何作线段的垂直平分线?7.如何过直线外一点作这条直线的垂线?组长签字:_ 8.探究案 探究一:作已知直线的垂直平分线 已知:求作:作法:A B CABDE教师复备栏或学生笔记栏 CBA 探究二:过直线外一点作这条直线的垂线 已知:求作:作法:P A B 跟踪训练:你能作出五角星的一条对称轴吗?当堂检测:1、某地由于居民增多,要在公路 l 上增加一个公共汽
11、车站 A、B 是路边的两个新建小区,这个公共汽车站建在什么位置 B A 2.某地有两所大学和两条相交叉的公路,如下图点M,N表示大 学,AO,BO表示公路.现计划修建一座物资仓库,希望仓库到两所 大学的距离相等,到两条公路的距离也相等.1你能确定仓库应该建在什么位置吗?在所给的图形中 画出你的设计方案;2阐述你设计的理由.3 练习:1.ABC 中,DE是AC的垂直平分线,垂足为E,交AB于点D,AE=5cm,CBD的周长为 24cm,求ABC的周长。2如图,已知在ABC中,AB=AC,BAC=120o,AC的垂直平分线EF交 AC于点 E,交 BC于点 F 求证:BF=2CF 学习 评价 自
12、我 评 价 小 组 评 价 教 师 评 价 综 合 评 价 优 良 及 差 优 良 及 差 优 良 及 差 优 良 及 差 N M B O A 教师复备栏或学生笔记栏 E D C B A ABCl 反思总结:13.2 画轴对称图形综合案 学习目标:1能够按要求作出简单平面图形经过一次对称后的图形。2、能设计简单的轴对称图案。3、通过画轴对称图形,增强学生学习几何的趣味感,培养审美情操。:学习重点:利用对称轴作轴对称图形。学习难点:找对称点。学法指导:1、温习前面所学的知识完成知识链接;2、读课本 6768 页了解内容;3、再读课文,找出画轴对称图形的方法;4.再读课文,理解画轴对称图形时如何找
13、对称点;5、再读课文,理解并记忆这种方 法;6、再读课文,找出疑惑并作出相应的标记;7、再读课文,做课 后的习题;8、完成学案;9、交流讨论学案的内容并作出评价。一、知识链接:1、如图:你能做出它关于虚线的对称图形吗?1找到点 A的对称点 A (2)A A与对称轴有什么关系?3在图中另找一对对称点,连接对称点的线段与对称轴还有上述关系吗?归纳:连接任意一对对称点的线段被对称轴_ 二、预习自测:如图,已知点 A和直线 l,试画出点 A关于直线 l 的对称点 A。请说说你的画法 l A 三、探究点 1:画已知图形的轴对称图形 作ABC关于直线 l 的对称的图形ABC 画法:教师复备栏或学生笔记栏
14、跟踪训练:请画出三角形关于直线 l 对称的图形 L A C B 四.探究点二:找对称轴 已知ABC,及点 A的对称点 A,请作出对称轴直线 l,并画出ABC 关于直线 l 的对称图形。A .A B C 跟踪训练:为学校运动会设计一徽标,要求贴近学生生活,突出运动主题,是轴对称图案。五、当堂检测:1、如图,ABC 中,AB=AC,DE 是AB 的垂直平分线,AB=8,BC=4,A=36,则DBC=,BDC 的周长CBDC=2、如图,ABC的三边 AB、BC、CA的长分别是 20、30、40、其中三条角平分线将ABD分为三个三角形,则 SABO:SBCO:SCAO=_ .教师复备栏或学生笔记栏 第
15、 1 题 第 2 题 B C A 3、如图,已知:AD平分BAC,EF垂直平分AD,交 BC延长线于F,连结 AF。求证:CAFB。六、反思总结:12.2 直角三角形全等的判定综合案 学习目标:1、掌握在平面直角坐标系中,关于x轴和y轴对称点的坐标特点。2、能在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形。3、能运用坐标中的轴对称特点解决简单的问题。学习重点:在平面直角坐标系中画出一些简单的关于 x 轴和 y 轴的对称图形 学习难点:能运用坐标中的轴对称特点解决简单的问题。学法指导:1、温习前面所学的知识完成知识链接;2、读课本 6970 页了解内容;3、再读课文,划出点关于 x 轴
16、,y 轴对称点的坐标 4.再读课文,理解点关于 x 轴,y 轴对称点的坐标;5、再读课文,点关于 x 轴,y 轴对称点的坐标;6、再读课文,找出疑惑并作出相 应的标记;7、再读课文,做课后的习题;8、完成学案;9、交流讨论 学案的内容并作出评价。一、知识链接:1、如图,在平面直角坐标系中,分别标出点A、B、C、D、E点的坐标。二、探究点一:点关于 x 轴对称(1)在坐标系中标出点A、B、C、D、E关于x轴的对称点A1、B1、C1、D1、E1(2)写出它们的坐标 学习 评价 自 我 评 价 小 组评 价 教 师评 价 综 合评 价 优 良 及 差 优 良 及 差 优 良 及 差 优 良 及 差
17、教师复备栏或学生笔记栏 3观察每对对称点的坐标,你发现了什么规律?归纳:在平面直角坐标系中,关于x轴对称的点横坐标_,纵坐标_。点x,y关于x轴的对称点的坐标为_.跟踪训练:点,、,关于 x 轴的对称点分别是什么?三、探究点二:点关于 y 轴对称(1)在坐标系中标出点A、B、C、D、E关于x轴的对称点A2、B2、C2、D2、E2(2)写出它们的坐标 3观察每对对称点的坐标,你发现了什么规律?归纳:在平面直角坐标系中,关于y轴对称的点横坐标_,纵坐标_。点x,y关于y轴的对称点的坐标为_.跟踪训练:1、点,、,关于y轴的对称点分别是什么?2、完成下表.已知点(2,-3)(-1,2)(-6,-5)
18、(0,-1.6)(4,0)关于x轴的对称点 关于y轴的对称点 3、点,与点,3关于_对称;点2,4与点2,4关于_对称;4、已知ABC的三个顶点的坐标分别为 A(-3,5),B(-4,1),C(-1,3),作出ABC关于 y 轴对称的图形。四、当堂检测 1、已知点P(2a+b,-3a)与点P(8,b+2).假设点p与点p关于x轴对称,则a=_ b=_.假设点p与点p关于y轴对称,则a=_ b=_.2、平面直角坐标系中,ABC的三个顶点坐标分别为 A0,4 ,B2,4 ,C3,1.1试在平面直角坐标系中,标出 A、B、C三点;2求ABC的面积.3假设111CBA与ABC关于 x 轴对称,写出1A
19、、1B、1C的坐标.3、根据以下点的坐标的变化,判断它们进行了怎样的变换:,教师复备栏或学生笔记栏 ,4、点 M(a,-5)与点 N(-2,b)关于 y 轴对称,则 a=_,b=_.5、已知点x,4-y与点1-y,2x关于y轴对称,则xy=。6、已知 A、B 两点的坐标分别是2,3和2,3,则下面四个结论:A、B关于 x 轴对称;A、B关于 y 轴对称;A、B关于原点对称;假设 A、B之间的距离为 4,其中正确的有 A1 个 B2 个 C3 个 D4 个 7、已知 A 1,2和 B 1,3,将点 A向_平移_个单位长度后得到的点与点 B关于 y 轴对称 五、课后反思:13.3.1 等腰三角形1
20、综合案 学习目标:1、了解等腰三角形的概念,掌握等腰三角形的性质。2、运用等腰三角形的概念及性质解决相关问题。学习重点:等腰三角形的概念及性质。学习难点:等腰三角形三线合一的性质的理解及其应用。学法指导:1、温习前面所学的知识完成知识链接;2、浏览学案,带着 问题自学课本;3、首先读课本 75 77 页了解内容;4、再读课文,根 据下面“问题导读”划等腰三角形的性质定理;5、再读课文,理解等 腰三角形的性质定理是如何推导出来的;6、小组内两两组合互相讲述 例 1 的步骤;7、完成课后习题;8、再读课文,找出疑惑并作出相应 的标记;9、合上课本完成学案;10、交流讨论学案的内容并作出评价。预习案
21、 问题导读:9.如何利用剪纸得到等腰三角形?10.等腰三角形有几条性质定理,分别是什么?11.等腰三角形的对称轴是什么?12.验证等腰三角形的性质定理2 的时候,你有几种证明方法?预习自测:1、以下图形不一定是轴对称图形的是 A圆 B长方形 C 线段 D 三角形 2、怎样的三角形是轴对称图形?答:3、有两边相等的三角形叫 ,相等的两边叫 ,另一边叫 两腰的夹角叫 ,腰和底边的夹角叫 4、如图,在ABC 中,AB=AC,标出各部分名称 学习 评价 自 我 评 价 小 组评 价 教 师评 价 综 合评 价 优 良 及 差 优 良 及 差 优 良 及 差 优 良 及 差 教师复备栏或学生笔记栏 探究
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 第十三 轴对称 详细 导学案全章
限制150内