2023年人教版六年级数学下册各单元知识点归纳总结2.pdf
《2023年人教版六年级数学下册各单元知识点归纳总结2.pdf》由会员分享,可在线阅读,更多相关《2023年人教版六年级数学下册各单元知识点归纳总结2.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版六年级数学下册各单元知识点 一 负数 1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出),光有学过的 0 1 3.4 25 是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负 2、负数:小于 0 的数叫负数(不包括 0),数轴上 0 左边的数叫做负数。若一个数小于 0,则称它是一个负数。负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面 加负号“-”号,不可以省略 例如:-2,-5.33,-45,-25 3、正数:大于 0 的数叫正数(不包括 0),数轴上 0 右边的数叫做正数 若一个数大于 0,则称它是一个正数。正数有无数个,其中有(
2、正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。例如:+2,5.33,+45,25 4、0 既不是正数,也不是负数,它是正、负数的分界限 负数都小于 0,正数都大于 0,负数都比正数小,正数都比负数大 5、数轴:负数 0 正数 左边 右边 6、比较两数的大小:利用数轴:负数0正数 或 左边右边 利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大 13 16 -13-16 二 百分数(二)(一)、折扣和成数 1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。几折就是十分之几,也就是百分之几
3、十。例如八折=810=80,六折五=6.510=65100=65 解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答 商品现在打八折 :现在的售价是原价的 80 商品现在打六折五:现在的售价是原价的 65 正 负 分界 0 正 负 分界 2、成数:几成就是十分之几,也就是百分之几十。例如一成=110=10,八成五=8.510=85100=80 解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答 这次衣服的进价增加一成 :这次衣服的进价比原来的进价增加 10
4、 今年小麦的收成是去年的八成五:今年小麦的收成是去年的 85(二)、税率和利率 1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。(3)应纳税额:缴纳的税款叫做应纳税额。(4)税率:应纳税额与各种收入的比率叫做税率。(5)应纳税额的计算方法:应纳税额=总收入税率 收入额=应纳税额税率 2、利率(1)存款分为活期、整存整取和零存整取等方法。(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使
5、得个人用钱更加安全和有计划,还可以增加一些收入。(3)本金:存入银行的钱叫做本金。(4)利息:取款时银行多支付的钱叫做利息。(5)利率:利息与本金的比值叫做利率。(6)利息的计算公式:利息本金利率时间 利率利息时间本金100(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息利息税率=利息(1-利息税率)税后利息=本金利率时间(1-利息税率)购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算。购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案 学后反思:做事情运用策略的好处 三 圆柱和圆锥 一
6、、圆柱 1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。圆柱也可以由长方形卷曲而得到。(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。其中,第一种方式得到的圆柱体体积较大。)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的 3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。(2)侧面的特征:圆柱的侧面是一个曲面。(3)高的特征 :圆柱有无数条高 4、圆柱的切割:横切:切面是圆,表面积增加 2 倍底面积,即 S 增=2r 竖切(过直径):切面是长方形(如果 h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的
7、底面直径,表面积增加两个长方形的面积,即 S增=4rh 5、圆柱的侧面展开图:沿着高展开,展开图形是长方形,如果 h=2r,展开图形为正方形 不沿着高展开,展开图形是平行四边形或不规则图形 无论怎么展开都得不到梯形 6、圆柱的相关计算公式:底面积 :S底=r 底面周长:C底=d=2r 侧面积 :S侧=2rh 表面积 :S表=2S底+S侧=2r+2rh 体积 :V柱=r h 考试常见题型:已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长 已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积 已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积 已知圆柱的底面面积和高,
8、求圆柱的侧面积,表面积,体积 已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积 以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算 无盖水桶的表面积 =侧面积一个底面积 油桶的表面积 =侧面积两个底面积 烟囱通风管的表面积=侧面积 只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装 侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池 侧面积+两个底面积:油桶、米桶、罐桶类 二、圆锥 1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的 圆锥也可以由扇形卷曲而得到 2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同
9、,圆锥只有一条高 3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。(2)侧面的特征:圆锥的侧面是一个曲面。(3)高的特征 :圆锥有一条高。4、圆柱的切割:横切:切面是圆 竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即 S增=2rh 5、圆锥的相关计算公式:底面积 :S底=r 底面周长:C底=d=2r 体积 :V锥=13 r h 考试常见题型:已知圆锥的底面积和高,求体积,底面周长 已知圆锥的底面周长和高,求圆锥的体积,底面积 已知圆锥的底面周长和体积,求圆锥的高,底面积 以上几种常见题型的解题方法,通常是求出圆锥
10、的底面半径和高,再根据圆柱的相关计算公式进行计算 三、圆柱和圆锥的关系 1、圆柱与圆锥等底等高,圆柱的体积是圆锥的 3 倍。2、圆柱与圆锥等底等体积,圆锥的高是圆柱的 3 倍。3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的 3 倍。4、圆柱与圆锥等底等高 ,体积相差23 Sh 题型总结 直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积 分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化 分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比 圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)横截面
11、的问题 浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体 等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的 问题,注意不要乘以13 四、典型题:1、一个圆柱的侧面展开是一个正方形,它的高是底面直径的倍,即 h=C=d,它的侧面积是 S 侧=h 2、圆柱的底面半径扩大 2 倍,高不变,表面积扩大 2 倍,体积扩大 4 倍。3、圆柱的底面半径扩大 2 倍,高也扩大 2 倍,表面积扩大 4 倍,体积扩大 8 倍。4、圆柱的底面半径扩大 3 倍,高缩小 3 倍,表面积不变,体积扩大 3 倍。5、一个圆
12、柱和它等底等高的圆锥体积之和是 48 立方厘米,这个圆柱的体积是()立方厘米,圆锥的体积是()立方厘米 圆锥和它等底等高的圆柱体积之比是 1:3,圆柱占 1 份,圆锥占 3 份,一共 4 份,题目中说了 4 份的和一共是 48 立方厘米。圆锥占了 4 份中的 1 份,圆柱占了 4 份中的 3 份 V锥:484=12(立方厘米)或 4814=12(立方厘米)V柱:484=12(立方厘米)123=36(立方厘米)或 4834=36(立方厘米)6、一个圆柱和它等底等高的圆锥体积之差是 24 立方分米,这个圆柱的体积是()立方分米,圆锥的体积是()立方分米。圆锥和它等底等高的圆柱体积之比是 1:3,圆
13、柱占 1 份,圆锥占 3 份,1 份和 3 份相差了 2 份,题目中说了相差 24 立方分米,2 份就是 24 立方分米 圆锥占了 2 份中的 1 份,圆柱占了 2 份中的 3 份 V锥:242=12(立方分米)或 2412=12(立方分米)V柱:242=12(立方分米)123=36(立方分米)或 2432=36(立方分米)7、一个圆柱和一个圆锥,体积相等,底面积也相等,圆柱的高是 2 厘米,圆锥的高是()厘米。V柱=V锥 V柱=V锥 S柱底h柱=13 S锥底h锥 S柱底h柱=13 S锥底h锥 h柱=13 h锥 S柱底=13 S锥底 2=13 h锥 4=13 S锥底 h锥=2 13 S锥底=4
14、13 h锥=6 S锥底=12 8、一个圆柱和一个圆锥体积相等,高也相等,圆柱的底面积是 4 平方分米,圆锥的底面积是()平方分米。9、一个圆锥和一个圆柱的底面积相等,体积的比是 1:6。如果圆锥的高是 3.6 厘米,圆柱的高是()厘米,如果圆柱的高是 3.6 厘米,圆锥的高是()厘米。13 S锥底h锥 1 13 S锥底h锥 1 S柱底h柱 6 S柱底h柱 6 13 h锥 1 13 h锥 1 h柱 6 h柱 6 h柱1=13 h锥6 h柱=13 h锥6 h柱=13 3.66 h柱13 6=h锥 h柱=7.2 3.613 6=h锥 10、一个圆柱体,把它的高截短 3 厘米,它的底面积减少 94.2
15、 平方厘米,这个圆柱的体积减少了()立方厘米。r C=S侧h r=C2 V=r h =94.23 =31.43.142 =3.1453 =31.4(厘米)=5(厘米)=235.5(立方厘米)四 比例 1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。(5)比的后项不能是零。(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年人教版 六年级 数学 下册 单元 知识点 归纳 总结
限制150内