2023年概率论与数理统计知识点归纳总结全面汇总归纳.pdf
《2023年概率论与数理统计知识点归纳总结全面汇总归纳.pdf》由会员分享,可在线阅读,更多相关《2023年概率论与数理统计知识点归纳总结全面汇总归纳.pdf(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 1 第 1 章 随机事件及其概率(1)排列组合公式)!(!nmmPnm 从 m个人中挑出 n 个人进行排列的可能数。)!(!nmnmCnm 从 m个人中挑出 n 个人进行组合的可能数。(2)加法和 乘 法 原理 加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由 m种方法完成,第二种方法可由 n种方法来完成,则这件事可由 m+n 种方法来完成。乘法原理(两个步骤分别不能完成这件事):m n 某件事由两个步骤来完成,第一个步骤可由 m种方法完成,第二个步骤可由 n 种方法来完成,则这件事可由 m n 种方法来完成。(3)一些常见排列 重复排列和非重复排列(有序)对
2、立事件(至少有一个)顺序问题(4)随机试 验 和 随机事件 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。(5)基本事件、样本空 间 和 事件 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:每进行一次试验,必须发生且只能发生这一组中的一个事件;任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用来表示。基本事件的全体,称为试验的样本空间,用表示。一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B
3、,C,表示事件,它们是的子集。为必然事件,为不可能事件。不可能事件()的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件()的概率为 1,而概率为 1 的事件也不一定是必然事件。(6)事件的 关 系 与运算 关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA 如果同时有BA,AB,则称事件A与事件B等价,或称A等于B:A=B。A、B中至少有一个发生的事件:AB,或者A+B。属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。A、B同时发生:AB,或者AB。AB=,则表示 A与 B不可能
4、同时发生,称事件 A与事件 B互不相容或者互斥。基本事件是互不相容的。1-A称为事件 A的逆事件,或称 A的对立事件,记为A。它表示 A不发生的事件。互斥未必对立。运算:结合率:A(BC)=(AB)C A(BC)=(AB)C 分配率:(AB)C=(AC)(BC)(A B)C=(AC)(BC)德摩根率:11iiiiAA BABA,BABA(7)概率的 公 理 化定义 设为样本空间,A为事件,对每一个事件A都有一个实数 P(A),若满足下列三个条件:1 0P(A)1,2 P()=1 3 对于两两互不相容的事件1A,2A,有 11)(iiiiAPAP 常称为可列(完全)可加性。则称 P(A)为事件A
5、的概率。(8)古典概型 1 n21,,2 nPPPn1)()()(21。设任一事件A,它是由m21,组成的,则有 P(A)=)()()(21m=)()()(21mPPP nm基本事件总数所包含的基本事件数A(9)几何概型 若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件 A,)()()(LALAP。其中 L为几何度量(长度、面积、体积)。(10)加法公式 P(A+B)=P(A)+P(B)-P(AB)当 AB不相容 P(AB)0 时,P(A+B)=P(A)+P(B)当 AB独立,P(AB)=P
6、(A)P(B),P(A+B)=P(A)+P(B)-P(A)P(B)(11)减法公式 P(A-B)=P(A)-P(AB)当 BA时,P(A-B)=P(A)-P(B)当 A=时,P(B)=1-P(B)(12)条件概率 定义 设 A、B是两个事件,且 P(A)0,则称)()(APABP为事件 A发生条件下,事 1 件 B发生的条件概率,记为)/(ABP)()(APABP。条件概率是概率的一种,所有概率的性质都适合于条件概率。例如 P(/B)=1P(B/A)=1-P(B/A)(13)乘法公式 乘法公式:)/()()(ABPAPABP 更一般地,对事件 A1,A2,An,若 P(A1A2An-1)0,则
7、有 21(AAP)nA)|()|()(213121AAAPAAPAP21|(AAAPn)1nA。(14)独立性 两个事件的独立性 设事件A、B满足)()()(BPAPABP,则称事件A、B是相互独立的。若事件A、B相互独立,且0)(AP,则有)()()()()()()|(BPAPBPAPAPABPABP 若事件A、B相互独立,则可得到A与B、A与B、A与B也都相互独立。必然事件和不可能事件 与任何事件都相互独立。与任何事件都互斥。多个事件的独立性 设 ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满足
8、P(ABC)=P(A)P(B)P(C)那么 A、B、C相互独立。对于 n 个事件类似。(15)全概公式 设事件nBBB,21满足 1nBBB,21两两互不相容,),2,1(0)(niBPi,2niiBA1,则有)|()()|()()|()()(2211nnBAPBPBAPBPBAPBPAP。全概率公式解决的是多个原因造成的结果问题,全概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式;(16)贝叶斯公式 设事件1B,2B,nB及A满足 1 1B,2B,nB两两互不相容,)(BiP0,i1,2,n,2 niiBA1,0)(AP,则 njjjiiiBAPBPBAPB
9、PABP1)/()()/()()/(,i=1,2,n。此公式即为贝叶斯公式。)(iBP,(1i,2,n),通常叫先验概率。)/(ABPi,(1i,2,1 n),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。将试验可看成分为两步做,如果求在第二步某事件发生条件下第一步某事件的概率,就用贝叶斯公式。(17)伯努利概型 我们作了n次试验,且满足 每次试验只有两种可能结果,A发生或A不发生;n次试验是重复进行的,即A发生的概率每次均一样;每次试验是独立的,即每次试验A发生与否与其他次试验A发生与否是互不影响的。这种试验称为伯努利概型,或称为n重伯努利试验。用p表示每
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 概率论 数理统计 知识点 归纳 总结 全面 汇总
限制150内