2023年人教版高中数学知识点总结归纳全面汇总归纳1.pdf
《2023年人教版高中数学知识点总结归纳全面汇总归纳1.pdf》由会员分享,可在线阅读,更多相关《2023年人教版高中数学知识点总结归纳全面汇总归纳1.pdf(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 高中数学 必修 1 知识点 第一章 集合与函数概念【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法 N表示自然数集,N或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系 对象a与集合M的关系是aM,或者aM,两者必居其一.(4)集合的表示法 自然语言法:用文字叙述的形式来描述集合.列举法:把集合中的元素一一列举出来,写在大括号内表示集合.描述法:x|x具有的性质,其中x为集合的代表元素.图示法:用数轴或韦恩图来表示集合.(5)集合的分类 含有有限个元素的集合叫做有限集.含有无限个元素的集合叫做
2、无限集.不含有任何元素的集合叫做空集().【1.1.2】集合间的基本关系(6)子集、真子集、集合相等 名称 记号 意义 性质 示意图 子集 BA(或)AB A 中的任一元素都属于 B(1)AA(2)A(3)若BA且BC,则AC(4)若BA且BA,则AB A(B)或BA 真子集 AB(或 BA)BA,且 B 中至少有一元素不属于 A(1)A(A 为非空子集)(2)若AB且BC,则AC BA 集合 相等 AB A 中的任一元素都属于 B,B 中的任一元素都属于 A(1)AB(2)BA A(B)(7)已知集合A有(1)n n 个元素,则它有2n个子集,它有21n个真子集,它有21n个非空子集,它有2
3、2n非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号 意义 性质 示意图 交集 AB|,x xA且xB(1)AAA(2)A (3)ABA ABB BA 并集 AB|,x xA或xB(1)AAA(2)AA(3)ABA ABB BA 补集 UA|,x xUxA且 1()UAA 2()UAAU 【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法 不等式 解集|(0)xa a|xaxa|(0)xa a|x xa 或xa|,|(0)axbc axbc c 把axb看 成 一 个 整 体,化 成|xa,|(0)xa a型不等式来求解(2)一元二次不等式
4、的解法 判别式 24bac 0 0 0 二次函数2(0)yaxbxc a的图象 O 一元二次方程20(0)axbxca 的根 21,242bbacxa(其中12)xx 122bxxa 无实根()()()UUUABAB痧?()()()UUUABAB痧?集合的关系是或者两者必居其一集合的表示法自然语言法用文字叙述的分类含有有限个元素的集合叫做有限集含有无限个元素的集合叫做无限于真子集或且中至少有一元素不属于集合相等中的任一元素都属于中的 20(0)axbxca 的解集 1|x xx或2xx|x2bxa R 20(0)axbxca 的解集 12|x xxx 1.2 函数及其表示【1.2.1】函数的概
5、念(1)函数的概念 设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()f x和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作:fAB 函数的三要素:定义域、值域和对应法则 只有定义域相同,且对应法则也相同的两个函数才是同一函数(2)区间的概念及表示法 设,a b是两个实数,且ab,满足axb 的实数x的集合叫做闭区间,记做,a b;满足axb 的实数x的集合叫做开区间,记做(,)a b;满足axb,或axb 的实数x的集合叫做半开半闭区间,分别记做,)a b,(,a b;满足,xa xa xb
6、 xb的实数x的集合分别记做,),(,),(,(,)aabb 注意:对于集合|x axb 与区间(,)a b,前者a可以大于或等于b,而后者必须 ab(3)求函数的定义域时,一般遵循以下原则:()f x是整式时,定义域是全体实数()f x是分式函数时,定义域是使分母不为零的一切实数()f x是偶次根式时,定义域是使被开方式为非负值时的实数的集合 对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1 tanyx中,()2xkkZ 零(负)指数幂的底数不能为零 若()f x是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数集合的关系是或者两者必
7、居其一集合的表示法自然语言法用文字叙述的分类含有有限个元素的集合叫做有限集含有无限个元素的集合叫做无限于真子集或且中至少有一元素不属于集合相等中的任一元素都属于中的 的定义域的交集 对于求复合函数定义域问题,一般步骤是:若已知()f x的定义域为,a b,其复合函数()f g x的定义域应由不等式()ag xb解出 对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论 由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义(4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的事实上,如果在函数的值域中存在一个最小(大)数,这个数就是
8、函数的最小(大)值因此求函数的最值与值域,其实质是相同的,只是提问的角度不同求函数值域与最值的常用方法:观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值 配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值 判别式法:若函数()yf x可以化成一个系数含有y的关于x的二次方程2()()()0a y xb y xc y,则在()0a y 时,由于,x y为实数,故必须有2()4()()0bya yc y,从而确定函数的值域或最值 不等式法:利用基本不等式确定函数的值域或最值 换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代
9、数函数的最值问题转化为三角函数的最值问题 反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值 数形结合法:利用函数图象或几何方法确定函数的值域或最值 函数的单调性法 【1.2.2】函数的表示法(5)函数的表示方法 表示函数的方法,常用的有解析法、列表法、图象法三种 解析法:就是用数学表达式表示两个变量之间的对应关系列表法:就是列出表格来表示两个变量之间的对应关系图象法:就是用图象表示两个变量之间的对应关系(6)映射的概念 设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应
10、法则f)叫做集合A到B的映射,记作:fAB 给定一个集合A到集合B的映射,且,aA bB如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象 集合的关系是或者两者必居其一集合的表示法自然语言法用文字叙述的分类含有有限个元素的集合叫做有限集含有无限个元素的集合叫做无限于真子集或且中至少有一元素不属于集合相等中的任一元素都属于中的 y x o 1.3 函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性 定义及判定方法 函数的 性 质 定义 图象 判定方法 函数的 单调性 如果对于属于定义域 I 内某个区间上的任意两个自变量的值 x1、x2,当 x1 x2时
11、,都有 f(x 1)f(x 2),那么就说f(x)在这个区间上是增函数 x1x2y=f(X)xyf(x)1f(x)2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增)(4)利用复合函数 如果对于属于定义域 I 内某个区间上的任意两个自变量的值 x1、x2,当x1f(x 2),那么就说f(x)在这个区间上是减函数 y=f(X)yxoxx2f(x)f(x)211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数 在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减
12、函数减去一个增函数为减函数 对 于 复 合 函 数()yf g x,令()ug x,若()yf u为 增,()ug x为 增,则()yf g x为增;若()yf u为减,()ug x为减,则()yf g x为增;若()yf u为增,()ug x为减,则()yf g x为减;若()yf u为减,()ug x为增,则()yf g x为减(2)打“”函数()(0)af xxax 的图象与性质()f x分别在(,a、,)a 上为增函数,分别在,0)a、(0,a上为减函数(3)最大(小)值定义 一般地,设函数()yf x的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有()f xM;(2)存在
13、0 xI,使得0()f xM那么,我们称M是函数()f x 的最大值,记作集合的关系是或者两者必居其一集合的表示法自然语言法用文字叙述的分类含有有限个元素的集合叫做有限集含有无限个元素的集合叫做无限于真子集或且中至少有一元素不属于集合相等中的任一元素都属于中的 max()fxM 一般地,设函数()yf x的定义域为I,如果存在实数m满足:(1)对于任意的xI,都有()f xm;(2)存在0 xI,使得0()f xm那么,我们称m是函数()f x的最小值,记作max()fxm【1.3.2】奇偶性(4)函数的奇偶性 定义及判定方法 函数的 性 质 定义 图象 判定方法 函数的 奇偶性 如果对于函数
14、 f(x)定义域内任意一个 x,都有 f(x)=f(x),那么函数 f(x)叫做奇函数 (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数 f(x)定义域内任意一个x,都有f(x)=f(x),那么函数 f(x)叫做偶函数 (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于 y 轴对称)若函数()f x为奇函数,且在0 x 处有定义,则(0)0f 奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反 在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商
15、)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数 补充知识函数的图象(1)作图 利用描点法作图:确定函数的定义域;化解函数解析式;讨论函数的性质(奇偶性、单调性);画出函数的图象 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象 平移变换 0,0,|()()hhhhyf xyf xh左移 个单位右移|个单位0,0,|()()kkkkyf xyf xk上移 个单位下移|个单位 伸缩变换 集合的关系是或者两者必居其一集合的表示法自然语言法用文字叙述的分类含有有限个元素的集合叫做有限集含有无限个元素的集合叫做无限
16、于真子集或且中至少有一元素不属于集合相等中的任一元素都属于中的 01,1,()()yf xyfx 伸缩 01,1,()()AAyf xyAf x 缩伸 对称变换()()xyf xyf x 轴 ()()yyf xyfx 轴()()yf xyfx 原点 1()()y xyf xyfx 直线()(|)yyyyf xyfx 去掉 轴左边图象保留 轴右边图象,并作其关于 轴对称图象()|()|xxyf xyf x 保留 轴上方图象将 轴下方图象翻折上去(2)识图 对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的
17、关系 (3)用图 函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具要重视数形结合解题的思想方法 第二章 基本初等函数()2.1 指数函数【2.1.1】指数与指数幂的运算(1)根式的概念 如果,1nxa aR xR n,且nN,那么x叫做a的n次方根当n是奇数时,a的n次方根用符号na表示;当n是偶数时,正数a的正的n次方根用符号na表示,负的n次方根用符号na表示;0 的n次方根是 0;负数a没有n次方根 式子na叫做根式,这里n叫做根指数,a叫做被开方数当n为奇数时,a为任意实数;当n为偶数时,0a 根 式 的 性 质:()nn
18、aa;当n为 奇 数 时,nnaa;当n为 偶 数 时,(0)|(0)nnaaaaaa (2)分数指数幂的概念 正数的正分数指数幂的意义是:(0,mnmnaaam nN且1)n 0 的正分数指数幂等于 0 正数的负分数指数幂的意义是:11()()(0,mmmnnnaam nNaa且1)n 0集合的关系是或者两者必居其一集合的表示法自然语言法用文字叙述的分类含有有限个元素的集合叫做有限集含有无限个元素的集合叫做无限于真子集或且中至少有一元素不属于集合相等中的任一元素都属于中的 的负分数指数幂没有意义 注意口诀:底数取倒数,指数取相反数(3)分数指数幂的运算性质(0,)rsrsaaaar sR (
19、)(0,)rsrsaaar sR()(0,0,)rrraba b abrR【2.1.2】指数函数及其性质(4)指数函数 函数名称 指数函数 定义 函数(0 xyaa且1)a 叫做指数函数 图象 1a 01a 定义域 R 值域(0,)过定点 图象过定点(0,1),即当0 x 时,1y 奇偶性 非奇非偶 单调性 在R上是增函数 在R上是减函数 函数值的 变化情况 1(0)1(0)1(0)xxxaxaxax 1(0)1(0)1(0)xxxaxaxax a变化对 图象的影响 在第一象限内,a越大图象越高;在第二象限内,a越大图象越低 2.2 对数函数【2.2.1】对数与对数运算 (1)对数的定义 若(
20、0,1)xaN aa且,则x叫做以a为底N的对数,记作logaxN,其中a叫做底数,N叫做真数 负数和零没有对数 对数式与指数式的互化:log(0,1,0)xaxNaN aaN xay xy(0,1)O1y xay xy(0,1)O1y 集合的关系是或者两者必居其一集合的表示法自然语言法用文字叙述的分类含有有限个元素的集合叫做有限集含有无限个元素的集合叫做无限于真子集或且中至少有一元素不属于集合相等中的任一元素都属于中的 (2)几个重要的对数恒等式 log 10a,log1aa,logbaab(3)常用对数与自然对数 常用对数:lg N,即10logN;自然对数:ln N,即logeN(其中2
21、.71828e)(4)对数的运算性质 如果0,1,0,0aaMN,那么 加法:logloglog()aaaMNMN 减法:logloglogaaaMMNN 数乘:loglog()naanMMnR logaNaN loglog(0,)bnaanMM bnRb 换底公式:loglog(0,1)logbabNNbba且 【2.2.2】对数函数及其性质(5)对数函数 函数 名称 对数函数 定义 函数log(0ayx a且1)a 叫做对数函数 图象 1a 01a 定义域 (0,)值域 R 过定点 图象过定点(1,0),即当1x 时,0y 奇偶性 非奇非偶 单调性 在(0,)上是增函数 在(0,)上是减函
22、数 xyO(1,0)1x logayxxyO(1,0)1x logayx集合的关系是或者两者必居其一集合的表示法自然语言法用文字叙述的分类含有有限个元素的集合叫做有限集含有无限个元素的集合叫做无限于真子集或且中至少有一元素不属于集合相等中的任一元素都属于中的 函数值的 变化情况 log0(1)log0(1)log0(01)aaaxxxxxx log0(1)log0(1)log0(01)aaaxxxxxx a变化对 图象的影响 在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高 (6)反函数的概念 设函数()yf x的定义域为A,值域为C,从式子()yf x中解出x,得式子()xy
23、如果对于y在C中的任何一个值,通过式子()xy,x在A中都有唯一确定的值和它对应,那么式子()xy表示x是y的函数,函数()xy叫做函数()yf x的反函数,记作1()xfy,习惯上改写成1()yfx(7)反函数的求法 确定反函数的定义域,即原函数的值域;从原函数式()yf x中反解出1()xfy;将1()xfy改写成1()yfx,并注明反函数的定义域(8)反函数的性质 原函数()yf x与反函数1()yfx的图象关于直线yx对称 函数()yf x的定义域、值域分别是其反函数1()yfx的值域、定义域 若(,)P a b在原函数()yf x的图象上,则(,)P b a在反函数1()yfx的图象
24、上 一般地,函数()yf x要有反函数则它必须为单调函数 2.3 幂函数(1)幂函数的定义 一般地,函数yx叫做幂函数,其中x为自变量,是常数(2)幂函数的图象 集合的关系是或者两者必居其一集合的表示法自然语言法用文字叙述的分类含有有限个元素的集合叫做有限集含有无限个元素的集合叫做无限于真子集或且中至少有一元素不属于集合相等中的任一元素都属于中的 (3)幂函数的性质 图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限 过定点:所有的
25、幂函数在(0,)都有定义,并且图象都通过点(1,1)单调性:如果0,则幂函数的图象过原点,并且在0,)上为增函数如果0,则幂函数的图象在(0,)上为减函数,在第一象限内,图象无限接近x轴与y轴 奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数当qp(其中,p q互质,p和qZ),若p为奇数q为奇数时,则qpyx是奇函数,若p为奇数q为偶数时,则qpyx是偶函数,若p为偶数q为奇数时,则qpyx是非奇非偶函数 图象特征:幂函数,(0,)yxx,当1时,若01x,其图象在直线yx下方,若1x,其图象在直线yx上方,当1时,若01x,其图象在直线yx上方,若1x,其图象在直线yx下方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年人教版 高中数学 知识点 总结 归纳 全面 汇总
限制150内