2023年八年级上数学培优专题如何做几何证明题含超详细解析答案.pdf
《2023年八年级上数学培优专题如何做几何证明题含超详细解析答案.pdf》由会员分享,可在线阅读,更多相关《2023年八年级上数学培优专题如何做几何证明题含超详细解析答案.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 如何做几何证明题【知识精读】1.几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并
2、使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。【分类解析】1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等
3、也经常用到。例 1.已知:如图 1 所示,ABC中,CACBCADDBAECF90,。求证:DEDF 学习必备 欢迎下载 CFBAED图1 分析:由 ABC是等腰直角三角形可知,AB45,由 D 是 AB 中点,可考虑连结 CD,易得CDAD,DCF45。从而不难发现DCFDAE 证明:连结 CD ACBCABACBADDBCDBDADDCBBAAECFADCBADCD 90,AD ECDFDEDF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结 CD,因为 CD 既是斜边上的中线,又是底
4、边上的中线。本题亦可延长 ED 到 G,使 DGDE,连结 BG,证 EFG是等腰直角三角形。有兴趣的同学不妨一试。例 2.已知:如图 2 所示,ABCD,ADBC,AECF。求证:EF 相互转化如证明平行关系可转化为证明角等或角互补的问题掌握分析证立需要具备的条件然后再把所需的条件看成要证的结论继续推敲如此逐设与结论的距离最后达到证明目的掌握构造基本图形的方法复杂的图形学习必备 欢迎下载 DBCFEA图2 证明:连结 AC 在 ABC和 CDA中,ABCDBCADACCAABCCDA SSSBDABCDAECFBEDF,()在 BCE和 DAF中,BEDFBDBCDABCEDAF SASEF
5、 ()说明:利用三角形全等证明线段求角相等。常须添辅助线,制造全等三角形,这时应注意:(1)制造的全等三角形应分别包括求证中一量;(2)添辅助线能够直接得到的两个全等三角形 2、证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证。证两条直线垂直,可转化为证一个角等于 90,或利用两个锐角互余,或等腰三角形“三线合一”来证。相互转化如证明平行关系可转化为证明角等或角互补的问题掌握分析证立需要具备的条件然后再把所需的条件看成要证的结论继续推敲如此逐设与结论的距离最后达到证明目的掌握构造基本图形的方法复杂的图形学习必备 欢迎下
6、载 例 3.如图,ABC=ADC,BF 和 DE 分别平分ABC 和ADC,1=2,证明:DEFB 证明:ADC=ABC,且2=ADE,CBF=ABF,故2=ABF,又2=1,因此1=ABF,DEBF.例 4.已知:如图 4 所示,ABAC,AAEBFBDDC 90。求证:FDED BCAFED321图4 证明一:连结 AD ABACBDDCDAEDABBACBDDCBDADBDABDAE ,129090 在 ADE和 BDF中,AEBFBDAEADBDADEBDFFDED ,313290 说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用相互转化如证明平行关系可转化
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年级 数学 专题 如何 几何 证明 题含超 详细 解析 答案
限制150内