2023年初中函数知识点总结归纳总复习1.pdf





《2023年初中函数知识点总结归纳总复习1.pdf》由会员分享,可在线阅读,更多相关《2023年初中函数知识点总结归纳总复习1.pdf(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 精品知识点 初中函数知识点总复习(一)平面直角坐标系知识点归纳 1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对 有序实数对(ba,)一一对应;其中,a为横坐标,b为纵坐标坐标;3、x轴上的点,纵坐标等于 0;y轴上的点,横坐标等于 0;坐标轴上的点不属于任何象限;4、四个象限的点的坐标具有如下特征:小结:(1)点 P(yx,)所在的象限 横、纵坐标x、y的取值的正负性;(2)点 P(yx,)所在的数轴 横、纵坐标x、y中必有一数为零;5、在平面直角坐标系中,已知点 P),(ba,则(1)点 P 到x轴的距离为b;
2、(2)点 P 到y轴的距离为a;(3)点 P 到原点 O 的距离为 PO 22ba 6、平行直线上的点的坐标特征:a)在与x轴平行的直线上,所有点的纵坐标相等;点 A、B 的纵坐标都等于m;b)在与y轴平行的直线上,所有点的横坐标相等;点 C、D 的横坐标都等于n;象限 横坐标x 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限 负 负 第四象限 正 负 P(ba,)a b x yO -3 -2 -1 0 1 a b 1 -1-2-3 P(a,b)Y x X Y A B mX Y C D n a b 学习必备 精品知识点 7、对称点的坐标特征:a)点 P),(nm关于x轴的对称点为),(
3、1nmP,即横坐标不变,纵坐标互为相反数;b)点 P),(nm关于y轴的对称点为),(2nmP,即纵坐标不变,横坐标互为相反数;c)点 P),(nm关于原点的对称点为),(3nmP,即横、纵坐标都互为相反数;关于 x 轴对称 关于 y 轴对称 关于原点对称 8、两条坐标轴夹角平分线上的点的坐标的特征:a)若点 P(nm,)在第一、三象限的角平分线上,则nm,即横、纵坐标相等;b)若点 P(nm,)在第二、四象限的角平分线上,则nm,即横、纵坐标互为相反数;在第一、三象限的角平分线上 在第二、四象限的角平分线上 (二)一次函数知识点归纳【基本要点】1、变量:在一个变化过程中可以取不同数值的量。常
4、量:在一个变化过程中只能取同一数值的量。2、函数:一般的,在一个变化过程中,如果有两个变量 x 和 y,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把 x 称为自变量,把 y 称为因变量,y 是 x 的函数。注:这是课本对于函数 的定义,在理解与实际运用中我们要注意以下几点:1、函数只能描述两个变量之间的关系,多一个少一个变量都是不对的;如:y=xz 中有三个变量,就不是函数;y=0 中只有一个变量,也不是函数;而 y=0(x0)却是函数,因为括号中标明了自变量的取值范围;2、当自变量去每一个确定的值时因变量只能取唯一确定的值相对应,反之,当因变量取每一个确定的值时
5、自变量可以去若干个值相对应;因为这两个变量有先变与后变的问题,让后变的先取一个值,先变的就不一定只取一个值;3、我们只能说函数值是自变量的函数,或用自变量来表示函数值,如:a 是 b 的函数就说明 a 是函数值,b 是自变量;用y 表示 x 就说明 y 是自变量,x 是函数值;任何函数都要标明谁是谁的函数,不能随便说一个解析式是不是函数,如:Y=x2,只能说 y 是 x 的函数,就不能说 x 是 y 的函数;4、函数解析式的表示:只有函数值写在等号左边,含有自变量的式子写在等号右边;注意不能写成 2y=3x-3或 y2=3x-3的形式;5、任何函数都包含自变量的取值范围,如果没指明说明自变量的
6、取值范围是任意实数。自变量的取值范围从以下几个方面把握:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。3、函数的图像 X y P 1P n n m O X y P 2Pm m n O X y P 3Pm m n O n X y P m n O y P m n O X 标坐标轴上的点纵坐标等于轴上的点横坐标等于坐标轴上的点不属于任点所在的数轴横纵坐标中必有一数为零在平面直角坐标系中已知点点到有点
7、的横坐标相等点的横坐标都等于学习必备精品知识点对称点的坐标学习必备 精品知识点 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象 4、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。5、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。6、函数的表示方法 列表法:一目了然,使用起来方便
8、,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。7、正比例函数及性质 一般地,形如 y=kx(k 是常数,k0)的函数叫做正比例函数,其中 k 叫做比例系数.注:正比例函数一般形式 y=kx(k 不为零)k 不为零 x 指数为 1 b 取零 当 k0 时,直线 y=kx 经过三、一象限,从左向右上升,即随 x 的增大 y 也增大;当 k0 时,图像经过一、三象限;k0,y 随 x 的增大而增大;k0 时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年初 函数 知识点 总结 归纳 复习

限制150内