2023年初中二年级数学精品讲义上册1.pdf
《2023年初中二年级数学精品讲义上册1.pdf》由会员分享,可在线阅读,更多相关《2023年初中二年级数学精品讲义上册1.pdf(66页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 欢迎下载 11 章 全等三角形 11.1 全等三角形 教学目标 通过实例理解全等形的概念和特征,并能识别图形的全等.知道全等三角形的有关概念,能正确地找出对应顶点、对应边、对应角;掌握全等三角形对应边相等,对应角相等的性质.能运用性质进行简单的推理和计算,解决一些实际问题.通过两个重合的三角形变换其中一个的位置,使它们呈现各种不同位置的活动,让学生从中了解并体会图形变换的思想,逐步培养学生动态的研究几何图形的意识.教学重点与难点 重点:全等三角形的有关概念和性质.难点:理解全等三角形边、角之间的对应关系.教学准备 复写纸、剪刀、半透明的纸、多媒体课件(几个重要片断中使用)等.教学设计
2、 问题情境 1.展现生活中的大量图片或录像片断.片断 1:图案.注:丰富的图形容易引起学生的注意,使他们能很快地投入到学习的情境中.片断 2:一幅漂亮的山水倒影画,一幅用七巧板拼成的美丽图案.片断 3:教科书第 90 页的 3 幅图案.2.学生讨论:(1)从上面的片断中你有什么感受?(2)你能再举出生活中的一些类似例子吗?注:它反映了现实生活中存在着大量的全等图形.图片的收集与制作 1.收集学生讨论中的图片.2.讨论(或介绍)用复写纸、手撕、剪纸、扎针眼等制作类似图形的方法.注:对学生进行操作技能的培训与指导.学生分组讨论、思考探究 1.上面这些图形有什么共同的特征?2.有人用“全等形”一词描
3、述上面的图形,你认为这个词是什么含义?注:对学生的不同回答,只要合理,就给予认可.教师明晰。建立模型 1.给出“全等形”、“全等三角形”的定义.2.列举反例,强调定义的条件.3.提出问题“你能构造一对全等三角形”吗?你是如何构造的,与同伴交流.4.全等三角形的对应元素及性质:教师结合手中的教具说明(学生运用自制学具理解)对应元素(顶点、边、角)的含义,并引导学生观察全等三角形中对应元素的关系,发现对应边相等,对应角相等(教师启发学生根据“重合”来说明道理).注:通过构图,为学生理解全等三角形的有关概念奠定基础.解析、应用与拓广 1.学生用半透明的纸描绘教科书 91 页图 13.1 1 中的AB
4、C,然后按“思考题”要求在三个图中依次操作.(或播放相应的课件)体验“平移、翻折、旋转前后的两个图形全等”.学习必备 欢迎下载 2.以图 13.1 1 中的两个三角形为例,介绍对应边、对应角以及两个三角形全等的符号表示、读法、写法,并说出图 13.1 2、图 13.1 3 的对应顶点、对应边、对应角,写出相等的边和角(解释“”的含义和读法,并强调对应顶点写在对应位置上).善于对基本三角形变换出各种图形,观察它们的对应边、对应角的变化,体会当公共边、公共角完全或部分重叠时,如何快速寻找.注:培养学生的动手操作能力.3.总结寻找全等三角形对应元素的方法,渗透全等变换的思想.4.学生运用自制的两块全
5、等三角形模板,用平移、翻折、旋转等方法,先独立拼出教科书 9293 页中的 5 个图形,说出它们的对应顶点、对应边、对应角,再与同伴交流,你还能拼出其他图形吗?拓展与延伸 1.议一议:右图是一个等边三角形,你能把它分成两个全等的三角形吗?你能把它分成三个、四个全等的三角形吗?2.例 1 已知ABCDFE,A=96,B=25,DF=10cm.求E的度数及 AB的长.注:目的是使学生在操作的过程中理解全等三角形的概念,发展空间观念.鼓励学生根据全等三角形的概念和性质,通过观察、尝试找到分割的方法,并可用分出来的图形是否重合来验证所得的结论.小结提高 1.回忆这节课:在自己动手实际操作中,得到了全等
6、三角形的哪些知识?注:对于学生的发言,教师要给予肯定的评价.2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等,但公共顶点不一定是对应顶点;3.在运用全等三角形的定义和性质时应注意规范书写格式.11.2 三角形全等的条件(1)教学目标 经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.掌握三角形全等的“边边边”条件,了解三角形的稳定性.通过对问题的共同探讨,培养学生的协作精神.教学重点与难点 重点:指导学生分析问题,寻找判定三角形全等的条件.难点:三角形全等条件的探索过程.教学设计 复习过程,引入新知 多媒体显示,带领学生复习全等三角形的定义及其性
7、质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.注:在教师引导下回忆前面知识,为探究新知识作好准备.创设情境,提出问题 根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?注:问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望.组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.质进行简单的推理和计算解决一些实际问题通过两个重合的三角形变换形的有关概念和性质难点理解全等三角形边角之间的对应关系教学准备能很快地投入到学习的情
8、境中片断一幅漂亮的山水倒影画一幅用七巧板学习必备 欢迎下载 注:对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生的个性思维.建立模型,探索发现 出示探究 1,先任意画一个ABC,再画一个ABC,使ABC与ABC满足上述条件中的一个或两个.你画出的ABC 与ABC一定全等吗?注:学生动手操作,通过实践、自主探索、交流,获得新知,同时也渗透了分类的思想.让学生按照下面给出的条件作出三角形.(1)三角形的两个角分别是 30、50.(2)三角形的两条边分别是 4 cm,6 cm.(3)三角形的一个角为 30,一条边为 3 cm.再通过画一画,剪一剪,比一比的方式,得出
9、结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究 2,先任意画出一个ABC,使AB=AB,BC=BC,CA=CA,把画好的ABC剪下,放到ABC 上,它们全等吗?让学生充分交流后,在教师的引导下作出ABC,并通过比较得出结论:三边对应相等的两个三角形全等.学生模仿上面的研究方法,在教师的引导下完成操作过程,通过交流,归纳得出结论,同时也明确判定三角形全等需要三个条件.应用新知,体验成功 实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.让学生通过实物来理解三角形的稳定性.鼓励学生举出生活中的实例.注:让学生体验数学在生活中应用的广泛性.给出例 1,
10、如图ABC是一个钢架,AB=AC,AD是连接点 A与 BC中点 D的支架,求证ABDACD.让学生独立思考后口头表达理由,由教师板演推理过程.注:检测学生对知识的掌握情况及应用能力,让学生初步体验成功的喜悦,同时也明确一下书写过程.巩固练习 教科书第 96 页的思考及练习.注:让学生巩固对三角形全等的判定条件的认识,同时也让学生尝试书写推理过程.反思小结 回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验.作业 1.必做题:教科书第 103 页习题 13.2 中的第 1、2 题.2.选做题:教科书第 1
11、04 页第 9 题.3.备选题:(1)如图是用圆规和直尺画已知角的平分线的示意图,作法如下:以 A为圆心画弧,分别交角的两边于点 B和点 C;分别以点 B、C为圆心,相同长度为半径画两条弧,两弧交于点 D;质进行简单的推理和计算解决一些实际问题通过两个重合的三角形变换形的有关概念和性质难点理解全等三角形边角之间的对应关系教学准备能很快地投入到学习的情境中片断一幅漂亮的山水倒影画一幅用七巧板学习必备 欢迎下载 画射线 AD.AD就是BAC的平分线.你能说明该画法正确的理由吗?(2)如图四边形 ABCD 中,AB CD,AD BC,你能把四边形 ABCD分成两个相互全等的三角形吗?你有几种方法?你
12、能证明你的方法吗?试一试.注:培养学生良好的学习习惯,巩固所学的知识,作业 2 是让学生对所学知识进行延伸和应用,满足不同层次学生的不同要求.11.2 三角形全等的条件(2)教学目标 经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.通过对问题的共同探讨,培养学生的协作精神.教学重点与难点 重点:应用“边角边”证明两个三角形全等,进而得出线段或角相等.难点:指导学生分析问题,寻找判定三角形全等的条件.教学设计 创设情境,引入课题 多媒体出示探究 3:已知任意ABC,画ABC,使 AB=AB,AC=AC,
13、A=A.教师点拨,学生边学边画图,再让学生把画好的 ABC 剪下,放在ABC上,观察这两个三角形是否全等.注:让学生动手操作具有“一般性”的实验,增加学生的现实感受,同时也培养学生的动手操作能力,使学生可以非常直观地获得结果.交流对话,探求新知 根据前面的操作,鼓励学生用自己的语言来总结规律:两边和它们的夹角对应相等的两个三角形全等.(SAS)注:培养学生的概括能力和语言表达能力.补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.注:归纳、分析得到的规律,使学生有更深刻的认识和理解.应用新知,体验成功 出示例 2,如图,有一池塘,要测池塘两端 A、B的距离,可先在平地上取一个
14、可以直接到达 A和 B的点 C,连接 AC并延长到 D,使 CD CA,连接 BC并延长到 E,使 CE CB.连接 DE,那么量出 DE的长就是 A、B的距离,为什么?通过测量池塘两端的距离这样一个实际问题,让学生综合运用了三角形全等的判定和性质,体验数学来源于实践,又服务于实践的思想,同时使学生进一步熟悉推理论证的模式,进一步完善学生的证明书写.让学生充分思考后,书写推理过程,并说明每一步的依据.(若学生不能顺利得到证明思路,教师也可作如下分析:要想证 AB DE,只需证ABCDEC,ABC与DEC全等的条件现有还需要)注:明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明
15、这两个三角形全等来解决.质进行简单的推理和计算解决一些实际问题通过两个重合的三角形变换形的有关概念和性质难点理解全等三角形边角之间的对应关系教学准备能很快地投入到学习的情境中片断一幅漂亮的山水倒影画一幅用七巧板学习必备 欢迎下载 再次探究,释解疑惑 出示探究 4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.注:让学生思考、交流、探讨,通过学生之间的交流、探讨活动,培养学生的协作精神,同时也释解心中的疑惑.教师演示:方法(一)教科
16、书 98 页图 13.2-7.方法(二)通过画图,让学生更直观地获得结论.巩固练习 教科书第 99 页,练习(1)(2).注:教给学生寻找全等条件的方法,完善学生全等的证明书写.小结 1.判定三角形全等的方法;2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.注:通过课堂小结,归纳整理本节课学习的内容,帮学生完善认知结构,形成解题经验.11.2 三角形全等的条件(3)教学目标 探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等.经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推
17、理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.教学重点与难点 重点:理解、掌握三角形全等的条件:“ASA”“AAS”.难点:探究出“ASA”“AAS”以及它们的应用.教学设计 创设情境 1.复习(用课件演示)(1)作线段 AB等于已知线段 a,(2)作ABC,等于已知 (课件出示题目,让学生回顾作图方法,用课件演示.)注:复习旧知,为探究“ASA”中的作ABC 作好知识铺垫,让学生在知识上做好衔接.2.引人 师:我们已经知道,三角形全等的判定条件有哪些?生:“SSS”“SAS”师:那除了这两个条件,满足另一些条件的两个三
18、角形是否也可能全等呢?今天我们就来探究三角形全等的另一些条件.注:复习判别两个三角形全等的两个条件,提出判别全等的新问题,激发学生探究的欲望,提高学习的积极性.探究新知 1.师:我们先来探究第一种情况.(课件出示“探究 5”)质进行简单的推理和计算解决一些实际问题通过两个重合的三角形变换形的有关概念和性质难点理解全等三角形边角之间的对应关系教学准备能很快地投入到学习的情境中片断一幅漂亮的山水倒影画一幅用七巧板学习必备 欢迎下载(1)探究 5 先任意画出一个ABC,再画一个ABC,使 AB=AB,A=A,B=B(即使两角和它们的夹边对应相等).把画好的ABC剪下,放到ABC 上,它们全等吗?师:
19、怎样画出ABC?先自己独立思考,动手画一画.注:让学生独立尝试画 ABC,目的是给学生独立思考、自主探究的时间,培养独立面对问题的勇气.并在独立作图过程中,提高分析、作图能力,获得“ASA”的初步感知.保证作图的正确性,这是探究出正确规律的前提.在画的过程中若遇到不能解决的问题,可小组合作交流解决.生:独立探究,试着画ABC(有问题的,可以小组内交流解决)(2)全班讨论交流 师:画好之后,我们看这儿有一种画法:(课件出示画法,出现一步,画一步)你是这样画的吗?师:把画好的ABC剪下,放到ABC 上,看看它们是否全等.生:(剪ABC,与ABC 作比较)师:全等吗?生:全等.师:这个探究结果反映了
20、什么规律?试着说说你的发现.生 1:我发现 生 2:生 3:两角和它们的夹边对应相等的两个三角形全等.注:不同的学生,表达语言也不同,不管是否严密,我们都应积极鼓励,加以引导,逐步严密化.师:这条件可以简写成“角边角”或“ASA”.至此,我们又增加了一种判别三角形全等的方法.特别应注意,“边”必须是“两角的夹边”.2.探究 6 师:我们再看看下面的条件:在ABC和DEF中,A=D,B=E,BC=EF,ABC与DEF全等吗?能利用角边角条件证明你的结论吗?师:看已知条件,能否用“角边角”条件证明.生独立思考,探究再小组合作完成.注:留给学生充分思考的时间.师:你是怎么证明的?(让小组派代表上台汇
21、报)小组 1:小组 2:投影仪展示学生证明过程(根据学生的不同探究结果,进行不同的引导)注:让学生上台汇报,创设学生展示自己探究成果的机会,获得成功的体验,激发再次探究的热情.师:从这可以看出,从这些已知条件中能得出两个三角形全等.这又反映了一个什么规律?生 1:两个角和其中一条边对应相等的两个三角形全等.质进行简单的推理和计算解决一些实际问题通过两个重合的三角形变换形的有关概念和性质难点理解全等三角形边角之间的对应关系教学准备能很快地投入到学习的情境中片断一幅漂亮的山水倒影画一幅用七巧板学习必备 欢迎下载 生 2:在ASA”中,“边”必须是“两角的夹边”,而这里,“边”可以是“其中一个角的对
22、边”.强调“AAS”中的边是“其中一个角的对边”.师:非常好,这里的“边”是“其中一个角的对边”.那怎样更完整的表述这一规律?生 1:两个角和其中一个角的对边对应相等的两个三角形全等.多让几个学生描述,进一步培养归纳、表达的能力.师:生 1 很好,这条件我们可以简写成“角角边”或“AAS,又增加了判定两个三角形全等的一个条件.3.例 3 师:下面我们看用“ASA”、“AAS”能否解决一些问题.(课件出示例 3)让学生自己看题、审题.师:根据已知条件,能得出什么?又联系所求证的,该如何证明?(先独立探究,再与同桌或四人小组交换意见,再全班交流)注:留给学生较充分的独立思考、探究的时间,在探究过程
23、中,提高逻辑推理能力.师:说说你的证明方法.(让学生上台讲解)生 1:生 2:根据学生的回答,教师板书(注意,条件的书写顺序)与学生一起回顾证明方法,逐步培养反思的习惯,形成理性思维.师:从这道例题中,我们又得出了证明线段相等的又一方法,先证两线段所在的三角形全等,这样,对应边也就相等了.4.探究 7:(1)三角对应相等的两个三角形全等吗?(课件出示题目)师:想想,怎样来探究这个问题?生 1:生 2:引导学生通过“画两个三角对应相等的三角形”,看是否一定全等,或“用两个同一形状但大小不同的三角板”等等方法来探究说明.注:引导学生先确定探究的思路与方法,进一步培养理性思维.也为学生提供创新的空间
24、与可能.生 1:生 2:三个角对应相等的两个三角形不一定全等.(2)师:说得非常好.现在我们来小结一下:判定两个三角形全等我们已有了哪些方法?生:SSS SAS ASA AAS 注:一个良好的知识建构是以后知识有效迁移的有力的保证.小结 师:这节课通过对两个三角形全等条件的进一步探究,你有什么收获?让学生各抒己见,积极地在知识、学习方法、习惯等方面加以小结,以培养反思的习 惯,培养理性思维.11.2 三角形全等的条件(4)教学目标 探索出直角三角形全等的条件HL,并掌握,能进行简单的应用.经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理能力.通过探究与交流,解决一些问题,获
25、得成功的体验,进一步激发探究的积极性.质进行简单的推理和计算解决一些实际问题通过两个重合的三角形变换形的有关概念和性质难点理解全等三角形边角之间的对应关系教学准备能很快地投入到学习的情境中片断一幅漂亮的山水倒影画一幅用七巧板学习必备 欢迎下载 教学重点与难点 重点:掌握判定两个直角三角形全等的特殊方法HL.难点:熟练选择判定方法,判定两个直角三角形全等.教学设计 创设情境,引入新课 师:我们知道,判定两个三角形全等的条件有哪些?生:SSS、SAS、AAS、ASA 师:根据这些条件,对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个直角三角形就全等了?(课件显示两个直角三角形,教师
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年初 年级 数学 精品 讲义 上册
限制150内