2023年北师大版七年级数学下册数学各章节知识点总结归纳全面汇总归纳.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2023年北师大版七年级数学下册数学各章节知识点总结归纳全面汇总归纳.pdf》由会员分享,可在线阅读,更多相关《2023年北师大版七年级数学下册数学各章节知识点总结归纳全面汇总归纳.pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备 精品知识点 第一章:整式的运算 同底数幂的乘法 幂的乘方 积的乘方 幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法 多项式除以单项式 一、整式的加减 1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律。2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。(2)按去括号法则去括号。(3)合并同类项。4、代数式求值的一般步骤
2、:(1)代数式化简。(2)代入计算 (3)对于某些特殊的代数式,可采用“整体代入”进行计算。二、同底数幂的乘法 1、n 个相同因式(或因数)a 相乘,记作 an,读作 a 的 n 次方(幂),其中 a 为底数,n 为指数,an的结果叫做幂。2、底数相同的幂叫做同底数幂。3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:aman=am+n。4、此法则也可以逆用,即:am+n=aman。5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。三、幂的乘方 1、幂的乘方是指几个相同的幂相乘。(am)n表示 n 个 am相乘。2、幂的乘方运算法则:幂的乘
3、方,底数不变,指数相乘。(am)n=amn。3、此法则也可以逆用,即:amn=(am)n=(an)m。四、积的乘方 1、积的乘方是指底数是乘积形式的乘方。2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。3、此法则也可以逆用,即:anbn=(ab)n。五、三种“幂的运算法则”异同点 1、共同点:(1)法则中的底数不变,只对指数做运算。(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。(3)对于含有 3 个或 3 个以上的运算,法则仍然成立。2、不同点:(1)同底数幂相乘是指数相加。(2)幂的乘方是指数
4、相乘。(3)积的乘方是每个因式分别乘方,再将结果相乘。六、同底数幂的除法 1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:aman=am-n(a0)。2、此法则也可以逆用,即:am-n=aman(a0)。七、零指数幂 1、零指数幂的意义:任何不等于 0 的数的 0 次幂都等于 1,即:a0=1(a0)。八、负指数幂 1、任何不等于零的数的p 次幂,等于这个数的 p 次幂的倒数,即:1(0)ppaaa 注:在同底数幂的除法、零指数幂、负指数幂中底数不为 0。九、整式的乘法 (一)单项式与单项式相乘 1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母
5、连同它的指数不变,作为积的因式。2、系数相乘时,注意符号。3、相同字母的幂相乘时,底数不变,指数相加。4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。5、单项式乘以单项式的结果仍是单项式。6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。(二)单项式与多项式相乘 1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。2、运算时注意积的符号,多项式的每一项都包括它前面的符号。3、积是一个多项式,其项数与多项式的项数相同。4、混合运算中,注意运算顺序,结果有同类项时
6、要合并同类项,从而得到最简结果。(三)多项式与多项式相乘 1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项学习必备 精品知识点 式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。4、运算结果中有同类项的要合并同类项。5、对于含有同一个字母的一次项系数是 1 的两个一次二项式相乘时
7、,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。十、平方差公式 1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。2、平方差公式中的 a、b 可以是单项式,也可以是多项式。3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成 (a+b)(a-b)的形式,然后看 a2与 b2是否容易计算。十一、完全平方公式 1、222222()2,()2,abaabbabaabb即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2 倍。2、公式中的 a
8、,b 可以是单项式,也可以是多项式。3、掌握理解完全平方公式的变形公式:(1)22222212()2()2()()ababababababab(2)22()()4ababab(3)2214()()ababab 4、完全平方式:我们把形如:22222,2,aabbaabb的二次三项式称作完全平方式。5、当计算较大数的平方时,利用完全平方公式可以简化数的运算。6、完全平方公式可以逆用,即:2222222(),2().aabbabaabbab 十二、整式的除法(一)单项式除以单项式的法则 1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的
9、字母,则连同它的指数一起作为商的一个因式。2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑。(二)多项式除以单项式的法则 1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。用字母表示为:().abcmambmcm 2、多项式除以单项式,注意多项式各项都包括前面的符号。第二章 平行线与相交线 余角 余角补角 补角 角 两线相交 对顶角 同位角 三线八角 内错角 同旁内角 平行线的判定 平行线 平行线的性质 尺规作图 一、余角与补角 1、如果两个角的和是直角,那么称这两个角互为余角,简称为
10、互余,称其中一个角是另一个角的余角。2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。5、余角和补角的性质用数学语言可表示为:(1)00001290(180),1390(180),则23 (同角的余角(或补角)相等)。(2)00001290(180),3490(180),且14,则23 (等角的余角(或补角)相等)。6、余角和补角的性质是证明两角相等的一个重要方法。二、对顶角 1、两条直线相交成四个角,其
11、中不相邻的两个角是对顶角。2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。3、对顶角的性质:对顶角相等。4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。三、同位角、内错角、同旁内角 1、两条直线被第三条直线所截,形成了8 个角。2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截
12、线)的同旁,这样的一对角叫同旁内角。平行线与相交线 公式完全平方公式单项式除以单项式多项式除以单项式一整式的加减整列出代数式用括号把每个整式括起来再用加减号连接按去括号法则去括次方幂其中为底数为指数的结果叫做幂底数相同的幂叫做同底数幂同底学习必备 精品知识点 5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。四、六类角 1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。2、余角、补角只有数量上的关系,与其位置无关。3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。4、对顶角既有数量关系,又有位置关系。五、平行线的判定方法 1、同位角
13、相等,两直线平行。2、内错角相等,两直线平行。3、同旁内角互补,两直线平行。4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。5、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行。六、平行线的性质 1、两直线平行,同位角相等。2、两直线平行,内错角相等。3、两直线平行,同旁内角互补。4、平行线的判定与性质具备互逆的特征,其关系如下:在应用时要正确区分积极向上的题设和结论。七、尺规作线段和角 1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。3、尺规作图中直尺的功能是:(1)在两点间连接一条线段;(
14、2)将线段向两方延长。4、尺规作图中圆规的功能是:(1)以任意一点为圆心,任意长为半径作一个圆;(2)以任意一点为圆心,任意长为半径画一段弧;5、熟练掌握以下作图语言:(1)作射线;(2)在射线上截取=;(3)在射线上依次截取=;(4)以点为圆心,为半径画弧,交于点;(5)分别以点、点为圆心,以、为半径作弧,两弧相交于点;(6)过点和点画直线(或画射线);(7)在的外部(或内部)画=;6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。(1)画线段=;(2)画=;第三章 三角形 三角形三边关系 三角形 三角形内角和定理 角平分线 三条重要线段 中线 高
15、线 全等图形的概念 全等三角形的性质 SSS 三角形 SAS 全等三角形 全等三角形的判定 ASA AAS HL(适用于 Rt)全等三角形的应用 利用全等三角形测距离 作三角形 一、三角形概念 1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“”表示。2、顶点是 A、B、C的三角形,记作“ABC”,读作“三角形 ABC”。3、组成三角形的三条线段叫做三角形的边,即边 AB、BC、AC,有时也用 a,b,c 来表示,顶点 A所对的边 BC用 a 表示,边 AC、AB分别用 b,c 来表示;4、A、B、C为 ABC的三个内角。二、三角形中三边的关系 1、三边关系:三角
16、形任意两边之和大于第三边,任意两边之差小于第三边。用字母可表示为 a+bc,a+cb,b+ca;a-bc,a-cb,b-cc,a+cb,b+ca同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即abcab .三、三角形中三角的关系 1、三角形内角和定理:三角形的三个内角的和等于1800。2、三角形按内角的大小可分为三类:公式完全平方公式单项式除以单项式多项式除以单项式一整式的加减整列出代数式用括号把每个整式括起来再用加减号连接按去括号法则去括次方幂其中为底数为指数的结果叫做幂底数
17、相同的幂叫做同底数幂同底学习必备 精品知识点(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“Rt”表示“直角三角形”,其中直角C所对的边 AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。注:直角三角形的性质:直角三角形的两个锐角互余。(3)钝角三角形,即有一个内角是钝角的三角形。3、判定一个三角形的形状主要看三角形中最大角的度数。4、直角三角形的面积等于两直角边乘积的一半。5、任意一个三角形都具备六个元素,即三条边和三个内角。都具有三边关系和三内角之和为1800的性质。6、三角形内角和定理包含一个等式,它是我们列出有
18、关角的方程的重要等量关系。四、三角形的三条重要线段 1、三角形的三条重要线段是指三角形的角平分线、中线和高线。2、三角形的角平分线:(1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。(2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。3、三角形的中线:(1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。(2)三角形有三条中线,它们相交于三角形内一点。4、三角形的高线:(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。(2)任意三角形都有三条高线,它们所在的直
19、线相交于一点。五、全等图形 1、两个能够重合的图形称为全等图形。2、全等图形的性质:全等图形的形状和大小都相同。3、全等图形的面积或周长均相等。4、判断两个图形是否全等时,形状相同与大小相等两者缺一不可。5、全等图形在平移、旋转、折叠过程中仍然全等。6、全等图形中的对应角和对应线段都分别相等。六、全等分割 1、把一个图形分割成两个或几个全等图形叫做把一个图形全等分割。2、对一个图形全等分割:(1)首先要观察分析该图形,发现图形的构成特点;(2)其次要大胆尝试,敢于动手,必要时可采用计算、交流、讨论等方法完成。七、全等三角形 1、能够重合的两个三角形是全等三角形,用符号“”连接,读作“全等于”。
20、2、用“”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。3、全等三角形的性质:全等三角形的对应边、对应角相等。这是今后证明边、角相等的重要依据。4、两个全等三角形,准确判定对应边、对应角,即找准对应顶点是关键。八、全等三角形的判定 1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。5、注意以下内容(1)三角形全等的判定条件中必须是三个元素,
21、并且一定有一组边对应相等。(2)三边对应相等,两边及夹角对应相等,一边及任意两角对应相等,这样的两个三角形全等。(3)两边及其中一边的对角对应相等不能判定两三角形全等。6、熟练运用以下内容(1)熟练运用三角形判定条件,是解决此类题的关 键。(2)已知“SS”,可考虑 A:第三边,即“SSS”;B:夹角,即“SAS”。(3)已知“SA”,可考虑 A:另一角,即“AAS”或“ASA”;B:夹角的另一边,即“SAS”。(4)已知“AA”,可考虑 A:任意一边,即“AAS”或“ASA”。7、三角形的稳定性:根据三角形全等的判定方法(SSS)可知,只要三角形三边的长度确定了,这个三角形的形状和大小就完全
22、确定了,三角形的这个性质叫做三角形的稳定性。九、作三角形 1、作图题的一般步骤:(1)已知,即将条件具体化;(2)求作,即具体叙述所作图形应满足的条件;(3)分析,即寻找作图方法的途径(通常是画出草图);(4)作法,即根据分析所得的作图方法,作出正式图形,并依次叙述作图过程;区 别 相 同 中 线 平分对边 三条中线交于三角形内部(1)都是线段(2)都从顶点画出(3)所在直线相交于一点 角平分线 平分内角 三条角平分线交于三角表内部 高 线 垂直于对边(或其延长线)锐角三角形:三条高线都在三角形内部 直角三角形:其中两条恰好是直角边 钝角三角形:其中两条在三角表外部 公式完全平方公式单项式除以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 北师大 七年 级数 下册 数学 各章 知识点 总结 归纳 全面 汇总
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内