2023年北师大版七年级下册第一章整式的乘除精品讲义.pdf
《2023年北师大版七年级下册第一章整式的乘除精品讲义.pdf》由会员分享,可在线阅读,更多相关《2023年北师大版七年级下册第一章整式的乘除精品讲义.pdf(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 时间:2016.2 学科:数学 年级:七 班级:1.6 主备教师:中宁六中集体备课课堂教学设计 课 题 1.1 同底数幂的乘法 教学重点 同底数幂的乘法法则的探索过程和理解应用.教学难点 同底数幂的乘法法则的理解.教学方法 讲练结合 教 学 目 标 知识与技能 理解同底数幂的乘法法则,能熟练运用该法则解决与之相关的一些数学问题.过程与方法 经历探索同底数幂乘法运算法则的过程,培养学生观察、猜想、推理和归纳的能力.情感态度 与价值观 通过同底数幂的乘法法则的探索过程使学生感受到由特殊到一般再到特殊的数学思想,通过合作学习激发学生的探索热情,感受到成功的喜悦.课 时 1 课时 教 学 过 程 教
2、师活动 学生活动 设计意图 一、情景导入,初步认知 1.乘方:同学们还记得“an”的意义吗?2.光在真空中的速度大约是 3105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要 4.22年.一年以 3107秒计算,比邻星与地球的距离约为多少千米?二、思考探究,获取新知 思考并回答 以有趣的天文知识为引例,让学生从中抽象出简单的数学模型。1.计算下列各式:(1)102103;(2)105108;(3)10m10n(m,n 都是正整数).你发现了什么?2.2m2n等于什么?呢?(m,n 都是正整数)3.合作交流:aman等于什么?(m,n 都是正整数)4.引导学生剖析法则
3、.(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)你能总结同底数幂的乘法的法则吗?【归纳结论】(aman=am+n aman=am+n(m,n 都是正整数)同底数幂相乘,底数不变,指数相加.想一想:amanap等于什么?am+n可以写成哪两个因式的积?鼓励学生自主探究,提倡算法的多样性,同时要求学生说明每一步计算的理由。学生说出后,教师板书:amanapam+n+p,并指出,这个式子说明“同底数幂相乘,底数不变,指数相加”,当三个或三个以上的同底数幂相乘时仍然成立。三、运用新知,深化理解 1.见教材 P3 例 1、例 2.2.计算:(1)-b3
4、b2 (2)(-a)a3(3)(-y)2(-y)3 (4)(-a)3(-a)4 猜想,交流,验证,口答.小组合作探究,对于有的同学可能会由上面的分析感觉到了规律的存在,可鼓励他们进行验证.请部分学生代表说出自己小组的观点,其他组同学则进行评价或发表不同的见解.(5)-3432 (6)(-5)7(-5)6(7)(-q)2n(-q)3 (8)(-m)4(-m)2(9)-23 (10)(-2)4(-2)5(11)-b9(-b)6 (12)(-a)3(-a3)答案:(1)-b5 (2)-a4 (3)-y5 (4)-a7 (5)-729 (6)-513(7)-q2n+3 (8)m6 (9)-8 (10)
5、-512 (11)-b15 (12)a6 3.下面的计算对不对?如果不对,应怎样改正?(1)2332=65;(2)a3+a3=a6;(3)ynyn=2y2n;(4)mm2=m2;(5)(-a)2(-a2)=a4;(6)a3a4=a12;(7)(-4)3=43;(8)77273=76;(9)-22=-4;(10)n+n2=n3.4.计算:5.计算:(结果可以化成以(a+b)或(a-b)为底时幂的形式).(1)(a-b)2(a-b)3(a-b)4(2)(a+b)m+1(a+b)+(a+b)m(a+b)2 答案:(1)(a-b)9 (2)2(a+b)m+2 闯 关练习以学生抢答方式完成 注意训练学生
6、的表述能力,以提高兴趣 帮助学生克服思维定势,引导学生从条件和结论两方面来辨析公式特点。独立完成 给学生充足的 思 维 空间,养成独立 思 考 习惯,让后进生也能在课堂上体验成功,有成就感;且该教学活动亦能培养学生仔细观察问题的习惯.归纳小结 本节课学习了同底数幂的乘法运算。同底数幂的乘法的运算法则是幂运算的第一个性质,也是整式乘除的主要依据之一。学习这一性质时,要注意以下几点:1、要弄清底浸透、指数、幂这几个概念的意义。2、在进行同底数幂运算时,首先要弄清各个因式的底数和指数分别是什么。要弄明底数是否相同。3、一般地,对底数相同和指数都是数字的且较容易计算时,应计算出结果,如 24应写作16
7、,而2100很难计算,就可以写成2100,但底数是10时,可以保留幂的形式。教 学 反 思 本课我采用探究合作教学法进行教学,充分发挥了学生的主体作用,积极为学生创设一个和谐宽松的情境,学生在自主的空间里自由奔放地想象,思维和学习取得较好的效果.在同底数幂乘法公式推导过程中学生思维经历了猜测、质疑、推理论证的科学发现过程,也渗透了转化和从特殊到一般的数学辩论思想,充分体现了自主探究的学习方式;而在巩固深化环节上精心设计开放式题目.通过学生独立思考,小组合作等手段,让学生个个动手、人人参与,充分调动学生学习数学的积极性.同时也使各层次的学生有不同的收获.时间:2016.2 学科:数学 年级:七
8、班级:1.6 主备教师:田喆 中宁六中集体备课课堂教学设计 课 题 1.2.1幂的乘方 教学重点 会进行幂的乘方的运算.教学难点 幂的乘方法则的总结及运用.教学方法 讲练结合 教 学 目 标 知识与技能 学习幂的乘方的运算性质,进一步体会幂的意义,并解决实际问题.过程与方法 经历探索幂的乘方运算性质的过程,发展推理能力和有条理的表达能力,提高解决问题的能力.情感态度 与价值观 体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.课 时 1 课时 教 学 过 程 教师活动 学生活动 设计意图 一、情景导入,初步认知 复习已学过的幂的意义及幂的运算法则.1.幂的意义是什么?2.同底数幂的乘法
9、的法则是什么?根据已经学习过的知识,带领学生回忆并探讨以下实际问题:(1)乙正方体的棱长是 2cm,则乙正方体的体积 V乙=_cm3.甲正方体的棱长是乙正方体的 5 倍,则甲正方体的体积 V=_cm3.(2)乙球的半径为 3cm,则乙球的体积 V乙=_cm 的 体积公式是 V=43r3,其中 V 是体积,r 是球的半径)甲球的半径是乙球的 10 倍,则甲球的体积 V甲=_cm3.如果甲球的半径是乙球的 n 倍,那么甲球体积是乙球体积的_倍.(3)地球、木星、太阳可以近似地看作球体.木星、太阳的半径分别约是地球的 10 倍和 102倍,它们的体积分别约是地球的_倍和_倍.二、思考探究,获取新知
10、1.通过问题情境继续研究:为什么(102)3=106 2.计算下列各式,并说明理由.(1)(62)4;(2)(a2)3;(3)(am)2;(4)(am)n.3.观察结果中幂的指数与原式中幂的指数及乘方的指数,想一想它们之间有什么关系?结果中的底数与原式的底数之间有什么关系?你能总结这个规律吗?【归纳结论】幂的乘方的法则:(am)n=amn(当 m、n 都是正整数)幂的乘方,底数不变,指数相乘.三、运用新知,深化理解 1.计算:思考并回答 思考并回答 在实际教学过程中应本着从学生实际出发的原则,首先从学生最为熟悉的正方体体积入手,通过具体数字来研究问题,这是良策.进而告知学生球的体积公式,给出具
11、体数字再去研究.(1)(75)4=_;(2)7574=_;(3)(x5)2=_;(4)x5x2=_;(5)(-7)45=_;(6)(-7)54=_.答案:(1)720(2)79(3)x10(4)x7(5)720(6)720 2.你能说明下面每一步计算的理由吗?将它们填在括号里.答案:(1)幂的乘方法则同底数幂的乘法法则(2)幂的乘方法则合并同类项法则 3.计算下列各式.4.若a-2b+(b-2)2=0,求 a5b10的值.解:a-2b 0,(b-2)20,且a-2b+(b-2)2=0.a-2b=0,(b-2)2=0,思考并回答 培养学生从“一般”到“特殊”再到“一般”的研究问题方法和概括归纳能
12、力.5.若 xmx2m=2,求 x9m.解:x3m=2,x9m=(x3m)3=23=8.6.已知 a=3555,b=4444,c=5333,试比较 a,b,c 的大小.解:a=3555=35111=(35)111=,b=4444=44111=(44)111=.c=5333=53111=(53)111=,又256243125,.即 bac.7.化简-(-a2)342 解:-(-a2)342=-a642=-a242=-a48 四、师生互动,课堂小结 1.(am)namn(m、n 是正整数),这里的底数 a,可以是数、是字母,也可以是代数式;这里的指数是指幂指数及乘方的指数.2.对于同底数幂的乘法、
13、幂的乘方、要理解它们的联系与区别.在利用法则解题时,要正确选用法则,防止相互之间发生混淆(如:amanam+n,(am)namn).并逐步培养自己“以理驭算”的良好运算习惯.5 题可作为例题讲解,4,6,7 题习题课讲解 教 学 反 思 本节课的设计意图是让学生以“观察归纳概括”为主要线索,在自主探索与合作交流中获得知识,使不同层次的学生都能有所收获与发展.从本节课的教学反馈来看,创设的问题情境激发了学生浓厚的学习兴趣,在老师的引导下,学生时而轻松愉快,时而在观察.计算、思考、交流、总结,思维能力和有条理的语言表达能力得到培养.在亲身体验和探索中认识数学、解决问题,在小结中找出两者的区别,从本
14、质上理解幂的乘方,合作精神得以培养,较好地完成了本节课的教学目标.本节课的收获:学生在探索练习的指引下,自主的完成有关的练习,并在练习中发现幂的乘方的法则,从猜测到探索到理解法则的实际意义从而从本质上认识、学习幂的乘方的来历。我鼓励学生自己发现幂的乘方的性质特点(如底数、指数发生了怎样的变化)并运用自己的语言进行描述。然后再让学生回顾这一性质的得来过程,进一步体会幂的意义。以实际问题引入幂的乘方的运算,体会幂的乘方运算的必要性,根据幂的意义,同底数幂的乘法运算性质,引导学生探索幂的乘方的运算性质,并用它进行计算.本节课的不足:在探究幂的乘方法则的逆运用时,给学生充分的讨论与思考的时间较少,从练
15、习中可以看出部分学生接受的有点不清晰,以后在难点问题要充分发挥学生的作用,争取当堂问题当堂清.时间:2016.2 学科:数学 年级:七 班级:1.6 主备教师:田喆 中宁六中集体备课课堂教学设计 课 题 1.2.2 积的乘方 教学重点 会进行积的乘方的运算.教学难点 正确区别幂的乘方与积的乘方的异同 教学方法 讲练结合 教 学 目 标 知识与技能.1.经历探索积的乘方的运算性质的过程,进一步体会幂的意义.2.了解积的乘方的运算性质,并能解决一些实际问题.过程与方法 在探索积的乘方的运算性质的过程中,发展推理能力和有条理的表达能力.情感态度 与价值观 在发展推理能力和有条理的语言和符号表达能力的
16、同时,进一步体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.课 时 1 课时 教 学 过 程 教师活动 学生活动 设计意图 一、情景导入,初步认知 1.复习前几节课学习的有关幂的三个知识点:幂的意义.同底数幂的乘法运算法则 aman=am+n(m、n 为正整数).幂的乘方运算法则(am)n=amn(m、n 都是正整数).2.计算:(1)-a2a6;(2)(-x)(-x)3;(3)(103)3;(4)(-p)(-p)4;(5)(a2)3(a3)2;(6)(a4)6-(a3)8.二、思考探究,获取新知 1.地球可以近似的看做是球体,如果用 V、r 分别代表球的 体积和半径,那么 V43r
17、3.地球的半径约为 6103千米,它的体积大约是多少立方千米?根据公式可知:V43r3=43(6103)3那么(6103)3=?2.仿照第(1)小题,计算(2)(3)题:(1)2353;解:原式(222)(555)=(2 5)(2 5)(2 5)=(2 5)3(2)2858;(3)212512.从以上的计算中,我们发现了什么?3.做一做:4.你能根据幂的意义和乘法的运算律推出公式吗?你能用自己的语言描述该性质的特点吗?思考并回答 参 与 回 顾旧知识为新课作准备.思考并回答 通 过 对 以上特别的计算,学生能归纳出:anbn=(ab)n.【归纳结论】anbn=(ab)n(n 为正整数)积的乘方
18、等于每一个因式乘方的积.三、运用新知,深化理解 1.见教材 P7 例 2.2.计算下列各式,结果是 x8的是(D)3.下列各式中计算正确的是(C)4.计算(-x2)3的结果是(C)A.-x5 B.x5 C.-x6 D.x6 5.下列四个算式中:(a3)3=a3+3=a6;(b2)22=b222=b8;(-x)34=(-x)12=x12;(-y2)5=y10,正确的算式有(C)A.0 个 B.1 个 C.2 个 D.3 个 8.已知:9n+1-32n=72,求 n 的值.解:由 9n+1-32n=72 得 32n+2-32n=72,932n-32n=72,832n=72,32n=9,所以 n=1
19、.四、师生互动,课堂小结 先小组内交流收获和感想,然后以小组为单位派代表进行总结,教师作以补充.思考并回答 在 实 践 中探索新知,进一步学会总结运算中的规律.教 学 反 思 通过本节课的学习,发现学生分不清各种运算.对此,没有什么好的方法,只能多练,这是一个熟悉的过程.培养学生把解题思路应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法.因此,在不增加学生负担的前提下,要求的作业是每节课后必须进行巩固练习,利用作业的巩固练习给老师提出问题,结合作业做一些合适的反思,对学生来说是培养思维能力的一项有效的活动.时间:2016.2 学科:数学 年级:七 班级:
20、1.6 主备教师:田喆 中宁六中集体备课课堂教学设计 课 题 1.3.1 同底数幂的除法 教学重点 会进行同底数幂的除法运算.教学难点 同底数幂的除法运算法则的总结及运用.教学方法 讲练结合 教 学 目 标 知识与技能.会进行同底数幂的除法运算,并能解决一些实际问题,了解零指数幂和负整数指数幂的意义,能进行零指数幂和负整数指数幂的乘除法运算.过程与方法.经历探索同底数幂除法运算性质的过程,进一步体会幂的意义,经历观察、归纳、猜想、解释等教学活动,体验解决问题方法的多样性,发展学生的合情推理和演绎推理能力以及有条理的表达能力.情感态度 与价值观 在解决问题的过程中了解数学的价值,体会数学的抽象性
21、、严谨性和广泛性.课 时 1 课时 教 学 过 程 教师活动 学生活动 设计意图 一、情景导入,初步认知 1.前面我们学习了哪些幂的运算?在探索法则的过程中我们用到了哪些方法?(1)同底数幂相乘,底数不变,指数相加.am an=am+n(m,n是正整数).(2)幂的乘方,底数不变,指数相乘.(am)n=amn(m,n 是正整数).(3)积的乘方等于积中各因数乘方的积.(ab)n=anbn(n 是正整数).二、思考探究,获取新知 探究 1:同底数幂的除法 1.计算下列各式,并说明理由(mn)(1)108 105;(2)10m 10n;(3)(-3)m(-3)n.2.探究:aman=?由幂的定义可
22、知 你能从中归纳出同底数幂除法的法则吗?【归纳结论】aman=am-n(a0,m,n 是正整数,且 mn)同底数幂相除,底数不变,指数相减.究 2:负整数指数幂 1.做一做:104=10000,24=16 10()=1000,2()=8 思考并回答 回顾前面的知 识 和 方法,为下面自主探索.归纳法则做好铺垫.思考并回答 让学生从有理数的运算出发,由特殊逐渐过 渡 到 一般,得到同底数幂的运算法则,再运用幂的意义 加 以 说明.在此过程中,提高学生类比、归纳、符号演算、推理能力和有条10()=100,2()=4 10()=10,2()=2 2.猜一猜:下面的括号内该填入什么数?你是怎么想的?与
23、同伴交流:3.你有什么发现?能用符号表示你的发现吗?4.你认为这个规定合理吗?为什么?【归纳结论】a0=1(a0)a-p=p1a(a0,p 是正整数)三、运用新知,深化理解 1.见教材 P10 例 1、例 22.计算:3.若式子(2x-1)0有意义,求 x 的取值范围.分析:由零指数幂的意义可知,只要底数不等于零即可.解:由 2x-10,得 x12,即,当 x12时,(2x-1)0有意义.4.计算:思考并回答 独立完成 理的表达能力.在教学时应重视对算理的理解,每一小题都应先让学生判断是不是同底数幂的除法运算,再说出每一步运 算 的 道理,有意识地培养他们有条理的思考和语言表 达能力 教 学
24、反 思 在同底数幂的除法这节教学活动中,通过组织学生从具体到一般,从生活到课堂,从未知到已知,一步步的探索,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步的发展,同时,也加深了我对新教材的理解,从而更好的完善新的教学模式.时间:2016.2 学科:数学 年级:七 班级:1.6 主备教师:田喆 中宁六中集体备课课堂教学设计 课 题 1.3.2负整数指数幂的应用 教学重点 用科学记数法表示小于 1 的正数 教学难点 用科学记数法表示小于 1 的正数 教学方法 讲练结合 教 学 目 标 知识与技能 会用科学记数法表示小于 1 的正数,能进行它们的乘除运算,并将结果用科学记数法表示出来
25、.过程与方法.借助自己熟悉的事物感受绝对值较小的数据,进一步培养学生的数感 情感态度 与价值观 了解数学的价值,体会数学在生活中的广泛应用 课 时 1 课时 教 学 过 程 教师活动 学生活动 设计意图 一、情景导入,初步认知 1.纳米是一种长度单位,1 米=1,000,000,000 纳米,你能用科学记数法表示 1,000,000,000 吗?2.在用科学记数法表示数据时,我们要注意哪些问题?二、思考探究,获取新知 1.1 纳米=()米这个结果还能用科学记数法表示吗?2.你知道生物课中接触的洋葱表皮细胞的直径是多少吗?照相机的快门时间是多长呢?中彩票头奖的可能性是多大?头发的直径又是多少呢?
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 北师大 年级 下册 第一章 整式 乘除 精品 讲义
限制150内