2023年北师大版八年级上册数学知识点归纳总结.pdf
《2023年北师大版八年级上册数学知识点归纳总结.pdf》由会员分享,可在线阅读,更多相关《2023年北师大版八年级上册数学知识点归纳总结.pdf(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版八年级上册数学知识点 想要学好数学,就要多做数学题。多做题,才能掌握各种各样的题型,那么对于数学的解题思路才能够了解,通过这样的积累就会使自己的解题思路和思维丰富。下面是小编整理的北师大版八年级上册数学知识点,仅供参考希望能够帮助到大家。北师大版八年级上册数学知识点 因式分解 1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3.公因式的确定:系数的公约数?相同因式的最低次幂.注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=
2、(b-a)2;(a-b)3=-(b-a)3.4.因式分解的公式:(1)平方差公式:a2-b2=(a+b)(a-b);(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换
3、位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n)2 的多项式叫完全平方式;对于二次三项式 x2+px+q,有“x2+px+q 是完全平方式?”.分式 1.分式:一般地,用 A、B表示两个整式,AB就可以表示为 的形式,如果 B中含有字母,式子 叫做分式.2.有理式:整式与分式统称有理式;即.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零
4、;注意:若分式的分子为零,而分母也为零,则分式无意义.4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 (3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.7.分式的乘除法法则:.8.分式的乘方:.9.负整指数计算法则:(1)公式
5、:a0=1(a0),a-n=(a0);(2)正整指数的运算法则都可用于负整指数计算;(3)公式:,;(4)公式:(-1)-2=1,(-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.11.最简公分母的确定:系数的最小公倍数?相同因式的次幂.12.同分母与异分母的分式加减法法则:.13.含有字母系数的一元一次方程:在方程 ax+b=0(a0)中,x 是未知数,a 和 b 是用字母表示的已知数,对 x 来说,字母 a 是 x 的系数,叫做字母系数,字母 b 是常数项,我们称它为含有
6、字母系数的一元一次方程.注意:在字母方程中,一般用 a、b、c 等表示已知数,用 x、y、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为 0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数
7、式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.数的开方 1.平方根的定义:若 x2=a,那么 x 叫 a 的平方根,(即 a 的平方根是 x);注意:(1)a叫 x 的平方数,(2)已知 x 求 a 叫乘方,已知 a 求 x 叫开方,乘方与开方互为逆运算.2.平方根的性质:(1)正数的平方根是一对相反
8、数;(2)0的平方根还是 0;(3)负数没有平方根.3.平方根的表示方法:a 的平方根表示为 和.注意:可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数 a 的正的平方根叫 a 的算术平方根,表示为.注意:0 的算术平方根还是 0.5.三个重要非负数:a20,|a|0,0.注意:非负数之和为 0,说明它们都是 0.6.两个重要公式:(1);(a0)(2).7.立方根的定义:若 x3=a,那么 x 叫 a 的立方根,(即 a 的立方根是 x).注意:(1)a叫 x 的立方数;(2)a的立方根表示为;即把 a 开三次方.8.立方根的性质:(1)正数的立方根是一个正数;(2)
9、0的立方根还是 0;(3)负数的立方根是一个负数.9.立方根的特性:.10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.11.实数:有理数和无理数统称实数.12.实数的分类:(1)(2).13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:.三角形 几何 A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,
10、这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图)几何表达式举例:(1)AD 平分BAC BAD=CAD (2)BAD=CAD AD是角平分线 2.三角形的中线定义:在三角形中,连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)几何表达式举例:(1)AD 是三角形的中线 BD=CD (2)BD=CD AD是三角形的中线 3.三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.(如图)几何表达式举例:(1)AD 是 ABC的高 ADB=90 (2)ADB=90 AD是 ABC的高 4.三角形的三边关系定理:三角形的两边之和大于第三边,三角形
11、的两边之差小于第三边.(如图)几何表达式举例:(1)AB+BCAC (2)AB-BCac p=5.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.(如图)几何表达式举例:(1)ABC 是等腰三角形 AB=AC (2)AB=AC ABC是等腰三角形 6.等边三角形的定义:有三条边相等的三角形叫做等边三角形.(如图)几何表达式举例:(1)ABC 是等边三角形 AB=BC=AC (2)AB=BC=AC ABC是等边三角形 7.三角形的内角和定理及推论:(1)三角形的内角和 180;(如图)(2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于和它不相邻的两个内角的和;(如图)(4)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 北师大 年级 上册 数学 知识点 归纳 总结
限制150内