2023年新人教版六年级数学下册知识点归纳总结超详细知识汇总全面汇总归纳.pdf
《2023年新人教版六年级数学下册知识点归纳总结超详细知识汇总全面汇总归纳.pdf》由会员分享,可在线阅读,更多相关《2023年新人教版六年级数学下册知识点归纳总结超详细知识汇总全面汇总归纳.pdf(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 1 人教版六年级数学下册知识点汇总 一、负数 1、负数的由来:为了表示相反意义的两个量(如盈利亏损、收入支出),仅有学过的 0,1,3.4,25 是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负 2、负数:小于 0 的数叫负数(不包括 0),数轴上 0 左边的数叫做负数。若一个数小于 0,则称它是一个负数。负数有无数个,其中有(负整数,负分数和负小数)负数的写法:数字前面加负号“”号,不可以省略.例如:-2,-5.33,-45,-25 3、正数:大于 0 的数叫正数(不包括 0),数轴上 0 右边的数叫做正数.若一个数大于 0,则称它是一个正数。正数有无数个,其中有(
2、正整数,正分数和正小数)正数的写法:数字前面可以加正号“+”号,也可以省略不写。例如:+2,5.33,+45,25 4、0 既不是正数,也不是负数,它是正、负数的分界限 负数都小于 0,正数都大于 0,负数都比正数小,正数都比负数大 5、数轴:负数 0 正数 左边 右边 6、比较两数的大小:利用数轴:负数0正数 或 左边右边 利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大.13 16 -13-16 正 负 分界 0 正 负 2 二、百分数(二)(一)、折扣和成数 1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。几
3、折就是十分之几,也就是百分之几十。例如八折=810=80,六折五=6.510=65100=65 解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答 商品现在打八折 :现在的售价是原价的 80 商品现在打六折五:现在的售价是原价的 65 2、成数:几成就是十分之几,也就是百分之几十。例如一成=110=10,八成五=8.510=85100=80 解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答 这次衣服的进价增加一成 :这次衣服的进价比原来的进价增加 10
4、今年小麦的收成是去年的八成五:今年小麦的收成是去年的 85(二)、税率和利率 1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。(3)应纳税额:缴纳的税款叫做应纳税额。(4)税率:应纳税额与各种收入的比率叫做税率。(5)应纳税额的计算方法:应纳税额=总收入税率 收入额=应纳税额税率 2、利率(1)存款分为活期、整存整取和零存整取等方法。(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得
5、个人用钱更加安全和有计划,还可以增加一些收入。(3)本金:存入银行的钱叫做本金。(4)利息:取款时银行多支付的钱叫做利息。(5)利率:利息与本金的比值叫做利率。3(6)利息的计算公式:利息本金利率时间 利率利息时间本金100(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息利息税率=利息(1-利息税率)税后利息=本金利率时间(1-利息税率)购物策略:估计费用:根据实际的问题,选择合理的估算策略,进行估算。购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案 学后反思:做事情运用策略的好处 三、圆柱和圆锥 4
6、(一)、圆柱 1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。圆柱也可以由长方形卷曲而得到。(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。其中,第一种方式得到的圆柱体体积较大。)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的 3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。(2)侧面的特征:圆柱的侧面是一个曲面。(3)高的特征 :圆柱有无数条高 4、圆柱的切割:横切:切面是圆,表面积增加2 倍底面积,即S 增=2r 竖切(过直径):切面是长方形(如果 h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱
7、的底面直径,表面积增加两个长方形的面积,即 S增=4rh 5、圆柱的侧面展开图:沿着高展开,展开图形是长方形,如果 h=2r,展开图形为正方形 不沿着高展开,展开图形是平行四边形或不规则图形 无论怎么展开都得不到梯形 6、圆柱的相关计算公式:底面积 :S 底=r 底面周长:C 底=d=2r 侧面积 :S 侧=2rh 表面积 :S 表=2S 底+S 侧=2r+2rh 体积 :V 柱=r h 考试常见题型:已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长 已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积 已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积 已知圆柱
8、的底面面积和高,求圆柱的侧面积,表面积,体积 已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积 以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算 无盖水桶的表面积 =侧面积一个底面积 油桶的表面积 =侧面积两个底面积 5 烟囱通风管的表面积=侧面积 只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装 侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池 侧面积+两个底面积:油桶、米桶、罐桶类(二)、圆锥 1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的 圆锥也可以由扇形卷曲而得到 2、圆锥的高是两个顶点与底面
9、之间的距离,与圆柱不同,圆锥只有一条高 3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。(2)侧面的特征:圆锥的侧面是一个曲面。(3)高的特征 :圆锥有一条高。4、圆柱的切割:横切:切面是圆 竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即 S 增=2rh 5、圆锥的相关计算公式:底面积 :S 底=r 底面周长:C 底=d=2r 体积 :V 锥=13 r h 考试常见题型:已知圆锥的底面积和高,求体积,底面周长 已知圆锥的底面周长和高,求圆锥的体积,底面积 已知圆锥的底面周长和体积,求圆锥的高,底面积 以上几种常见
10、题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算(三)、圆柱和圆锥的关系 1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3 倍。2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3 倍。3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的 3 倍。4、圆柱与圆锥等底等高 ,体积相差23 Sh 题型总结 6 直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积 分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化 分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比 圆柱与圆锥关系的转换:包括削成最大体积的问题(正方
11、体,长方体与圆柱圆锥之间)横截面的问题 浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体 等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的 问题,注意不要乘以13 (四)、典型题:1、一个圆柱的侧面展开是一个正方形,它的高是底面直径的倍,即 h=C=d,它的侧面积是 S 侧=h 2、圆柱的底面半径扩大 2 倍,高不变,表面积扩大 2 倍,体积扩大 4 倍。3、圆柱的底面半径扩大 2 倍,高也扩大 2 倍,表面积扩大 4 倍,体积扩大 8 倍。4、圆柱的底面半径扩大 3 倍,高缩小 3 倍,表面
12、积不变,体积扩大 3 倍。5、一个圆柱和它等底等高的圆锥体积之和是 48 立方厘米,这个圆柱的体积是()立方厘米,圆锥的体积是()立方厘米 圆锥和它等底等高的圆柱体积之比是 1:3,圆柱占 1 份,圆锥占 3 份,一共 4 份,题目中说了 4 份的和一共是 48 立方厘米。圆锥占了 4 份中的 1 份,圆柱占了 4 份中的 3 份 V 锥:484=12(立方厘米)或 4814=12(立方厘米)V 柱:484=12(立方厘米)123=36(立方厘米)或 4834=36(立方厘米)6、一个圆柱和它等底等高的圆锥体积之差是 24 立方分米,这个圆柱的体积是()立方分米,圆锥的体积是()立方分米。圆锥
13、和它等底等高的圆柱体积之比是1:3,圆柱占 1 份,圆锥占 3 份,1 份和 3 份相差了2 份,题目中说了相差 24 立方分米,2 份就是 24 立方分米 圆锥占了 2 份中的 1 份,圆柱占了 2 份中的 3 份 V 锥:242=12(立方分米)或 2412=12(立方分米)7 V 柱:242=12(立方分米)123=36(立方分米)或 2432=36(立方分米)7、一个圆柱和一个圆锥,体积相等,底面积也相等,圆柱的高是 2 厘米,圆锥的高是()厘米。V 柱=V 锥 V 柱=V 锥 S 柱底 h 柱=13 S 锥底 h 锥 S柱底 h 柱=13 S 锥底 h 锥 h柱=13 h 锥 S柱底
14、=13 S 锥底 2=13 h 锥 4=13 S 锥底 h锥=2 13 S锥底=413 h锥=6 S锥底=12 8、一个圆柱和一个圆锥体积相等,高也相等,圆柱的底面积是 4 平方分米,圆锥的底面积是()平方分米。9、一个圆锥和一个圆柱的底面积相等,体积的比是 1:6。如果圆锥的高是 3.6 厘米,圆柱的高是()厘米,如果圆柱的高是 3.6 厘米,圆锥的高是()厘米。13 S 锥底 h 锥 1 13 S 锥底 h 锥 1 S柱底 h 柱 6 S柱底 h 柱 6 13 h 锥 1 13 h 锥 1 h柱 6 h柱 6 h 柱1=13 h 锥6 h 柱=13 h 锥6 h 柱=13 3.66 h柱1
15、3 6=h 锥 h 柱=7.2 3.613 6=h 锥 10、一个圆柱体,把它的高截短 3 厘米,它的底面积减少 94.2 平方厘米,这个圆柱的体积减少了()立方厘米。r C=S 侧h r=C2 V=r h 8 =94.23 =31.43.142 =3.1453 =31.4(厘米)=5(厘米)=235.5(立方厘米)四、比例 1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。(4)比值通常用分数表示,也可以用小数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 新人 六年级 数学 下册 知识点 归纳 总结 详细 知识 汇总 全面
限制150内