第七章联立方程模型优秀课件.ppt
《第七章联立方程模型优秀课件.ppt》由会员分享,可在线阅读,更多相关《第七章联立方程模型优秀课件.ppt(74页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第七章联立方程模型第1页,本讲稿共74页第一节联立方程模型的概念迄今为止,我们的介绍都是围绕单方程模型进行的,可是,很多经济理论是建立在一组经济关系上的,其数学模型是一个方程组,称为多方程模型或联立方程模型(simultaneousequationsmodel)。熟悉的例子有市场均衡模型、商品需求方程组和宏观经济模型等。联立方程模型用于描述整个经济系统或其子系统。第2页,本讲稿共74页一、联立方程模型的估计问题在联立方程模型的情况下,模型中各变量之间的相互作用都将对模型各方程的说明和估计产生影响。为了说明这一点,让我们看一个简单的例子。假设我们要估计简单的凯恩斯收入决定模型(1)(2)中消费函
2、数的参数。其中Y,C,I分别表示总量收入、消费和投资。2第3页,本讲稿共74页(1)代入(2)并整理得:(3)(3)式中右端第三项表明收入还依赖于消费函数中扰动项u的大小,即Y包含一个随机分量,因而Y是随机变量,它与(1)式中的扰动项同期相关。由于Y是(1)式中的解释变量,因而使得高斯马尔可夫定理中解释变量非随机的假设不成立。OLS估计量将不仅有偏,而且不一致。第4页,本讲稿共74页随机解释变量问题上面的简例说明,由于联立方程模型中各变量的相互作用,会带来估计方面的问题,特别是随机解释变量的问题,因而需要研究如何解决联立方程模型的参数估计问题。我们将在后面的章节中对此进行讨论。在此之前,让我们
3、首先介绍一些有关联立方程模型的概念和术语。第5页,本讲稿共74页二、行为方程和恒等式1.行为方程(behaviouralequation)凯恩斯收入决定模型中的消费函数是一个行为方程,它描述的是消费者的行为,即在给定收入的情况下,平均而言,消费者的行为是怎样的。除了描述消费者行为的方程外,还有描述生产者、投资者及其它经济参与方行为的方程,它们都是行为方程。还有一类描述经济变量之间技术联系的方程,如C-D生产函数,它们描述的不是行为,但通常也将它们归入行为方程一类。因此,广义地说,行为方程是描述变量之间经验关系的方程。行为方程是描述变量之间经验关系的方程。第6页,本讲稿共74页2.恒等式(ide
4、ntityrelation)恒等式亦称定义式,是人为定义的一种变量间的恒等关系。如凯恩斯收入决定模型中的(2)式(国民收入恒等式):又如:净投资资本存量的变动期末资本存量期初资本存量第7页,本讲稿共74页3.恒等式和行为方程的区别恒等式与行为方程的区别有以下两点:(1)恒等式不包含未知参数,而行为方程含有未知参数。(2)恒等式中没有不确定性,而行为方程包含不确定性,因而在计量经济分析中需要加进随机扰动因子。第8页,本讲稿共74页三、外生变量、内生变量和前定变量1.外生变量(exogenousvariable)外生变量是其值在模型之外决定的变量。模型中使用它们,但不由模型决定它们的值。在求解模型
5、之前,必须用其他方法给定外生变量的值(如利用国际组织公布的预测数据,或时间序列预测得出的预测值)。第9页,本讲稿共74页2.内生变量(endogenousvariable)内生变量是其值在模型内确定的变量。内生变量既由模型使用(如可以作解释变量),又由模型决定。由于在求解模型时,通常是需要联立地解出所有内生变量的值,因而称为联立方程模型。单方程模型中,内生变量就是因变量,外生变量是解释变量(滞后内生变量除外)。第10页,本讲稿共74页3.前定变量(predeterminedvariable)前定变量包括外生变量和滞后内生变量。在模型求解本期内生变量的值之前,本期外生变量和滞后外生变量的值是给定
6、的,滞后内生变量的值在前面各期中已解出,因而也是已知的(前定的),它们统称前定变量。第11页,本讲稿共74页4.如何确定模型中的内生变量和外生变量由于内生变量是联立地被决定,因此,联立方程模型中有多少个内生变量就必定有多少个方程。这个规则决定了任何联立方程模型中内生变量的个数。可是,确定哪个变量为内生变量,要根据经济分析和模型的用途。在设定模型时,通常将以下两类变量设定为外生变量:第12页,本讲稿共74页(1)政策变量,如货币供给、税率、利率、政府支出等。(2)短期内很大程度上是在经济系统之外决定或变化规律稳定的变量,如人口、劳动力供给、国外利率、世界贸易水平、国际原油价格等。在我们前面的简例
7、中,有三个经济变量,两个方程,因而有两个内生变量,它们是消费(C)和收入(Y)。模型中没有决定投资(I)的机制,因而在此模型中,投资作为外生变量。第13页,本讲稿共74页让我们再看一个例子,由菲利普斯工资方程和价格方程组成的模型:(4)(5)其中货币工资变动,UN=失业率=价格变动,=资金成本变动=进口原料费用变动第14页,本讲稿共74页在此模型中,内生变量是:,外生变量是:,UN。不难看出,在上述两例中,方程的左端都是内生变量。联立方程模型中每个方程的左端为不同内生变量原型的写法,称为方程的正规化。第15页,本讲稿共74页四、模型的结构式和简化式1.结构式(Structuralform)联立
8、方程模型的结构式是依据经济理论设定模型时所采取的形式。其中的方程称为结构方程,一个结构方程反映一个基本的经济关系,即对经济理论的一种阐述。结构方程的参数称为结构参数。上述两例都是按结构式的形式给出的。第16页,本讲稿共74页简化式方程描述了内生变量是怎样被真正决定的。第17页,本讲稿共74页第18页,本讲稿共74页第二节识别问题(Theidentificationproblem)一、识别的概念识别问题是一个与联立方程有关的数学问题,让我们用一个简单的例子来说明识别的概念。设是某种商品的需求量,是供给量,P为该商品的价格,则该商品供求模型为:第19页,本讲稿共74页这里的问题是很难找到一种观测需
9、求量和供给量的有效方法,通常能够观测到的只是市场运行的结果。因此一般的作法是假设供给量和需求量相等,即市场是结清的。这相当于在模型中增加一个方程:如果只用可观测变量来建立模型,我们可令Q代表市场结清量,从而有Qt=+Pt+ut Qt=+Pt+vt第20页,本讲稿共74页问题在于,模型中两个方程具有完全相同的统计形式:Qt=截距斜率Pt扰动因子这就提出了下面的问题:给定P和Q的数据,如何能知道我们是在估计需求曲线还是在估计供给曲线?我们无法知道所要估计的是哪一组参数,因为没有足够的信息来识别被估计的方程,这就是识别问题。第21页,本讲稿共74页如果光是需求函数和供给函数,情况还简单一点,问题在于
10、,如果Qt=+Pt+ut Qt=+Pt+vt 两式成立,则对于任意常数和(+0),上述两式的线性组合也将成立,即第22页,本讲稿共74页成立。由于和的取值可任意,则这样的方程数目实际上是无限的,它们与需求函数和供给函数具有相同的统计形式。因此,如果我们试图估计一个方程,其中Q是P的函数,则我们无法得知我们估计的是这无限多个方程中的哪一个。由上可知,在对联立方程估计之前,必须解决模型的识别问题。第23页,本讲稿共74页二、不可识别、恰好识别和过度识别1.可识别和不可识别方程定义:如果对于一个方程,我们无法通过取它所在模型中各方程的线性组合的方法,得到另一个与该方程统计形式完全相同的方程,则该方程
11、是可识别的。例1考虑某农产品供求模型:将上述定义应用于农产品供求模型,由于我们得到的线性组合与需求函数和供给函数具有完全相同的统计形式,因此需求函数和供给函数都是不可识别的。第24页,本讲稿共74页第25页,本讲稿共74页从上面的几例可知,模型中存在的识别问题是可以消除的。我们在原模型两方程中添加不同的解释变量,就使得两个方程都从不可识别变为可识别。第26页,本讲稿共74页一般来说,如果我们能够用经济理论或额外信息为联立方程组施加约束条件,则可以消除识别问题。这些约束条件可以采取各种形式,但最常用的是所谓的“零零约约束束”,即规定某些结构参数为0,也就是说,某些内生变量和外生变量不出现在某些方
12、程之中。在上面的例3中,共有4个变量,第一个方程中没有Rt,第二个方程中没有Yt,因而每个方程各有一个零约束。正是由于这个零约束,使得它们有别于用任意和形成的线性组合方程,具有独一无二的形式,因而是可识别的。第27页,本讲稿共74页2.恰好识别和过度识别可识别方程可分成恰恰好好识识别别(just-identified或exactlyidentified)和过过度度识识别别(over-identified)两类。如果模型中约束条件所提供的信息对于识别某个方程刚好够用,则该方程是恰好识别的,如果约束条件所提供的信息对于识别某个方程不但够用,而且有余,则该方程是过度识别的。如果一个方程是不可识别的,
13、则它的结构参数不能被估计,也就是说,不存在估计这些参数的有意义的方法。因此,模型中若有不可识别方程,则应首先消除这个问题。第28页,本讲稿共74页三、识别的阶条件和秩条件1.识别的阶条件识别的阶条件在实践中,经济模型比我们所举的简单联立方程模型例子要复杂得多。当模型中方程很多时,要确定该模型中某个方程是否可识别显然将很复杂。对于这种情况,有一些比较方便的判别准则可用。其中常用的是所谓“识识别别的的阶阶条条件件”(ordercondition):模模型型中中一一个个方方程程是是可可识识别别的的必必要要条条件件是是,该该方方程程所所不不包包含含的模型中变量的数目大于等于模型中方程个数减的模型中变量
14、的数目大于等于模型中方程个数减1,即,即KMG1.其中:K模型中的变量总数(内生变量前定变量)M该方程中所包含的变量数目G模型中方程个数(即内生变量个数)第29页,本讲稿共74页尽管识别的阶条件只是一个必要条件,也就是说,模型中任何可识别方程必定满足KMG1,但满足该条件的方程则未必是可识别方程。但在实际应用中,为方便起见,人们往往用它来判别一个方程是否可识别,就象用一阶导数是否等于零来判别极值是否存在一样。实践中,应用识别的阶条件进行判别的准则是:若KMG1,则过度识别;若KM=G1,则恰好识别。经验表明,在绝大多数情况下,这种用法不会有多大问题,但应当明白,毕竟存在着阶条件满足而方程不可识
15、别的情况。第30页,本讲稿共74页上述识别的阶条件是该条件在实际应用中使用最广泛的一种形式,其更一般的表述形式为:模模型型中中一一个个方方程程是是可可识识别别的的必必要要条条件件是是,施施加加于于该该方方程程的的结结构构参参数数上上的的约约束束条条件件的的数数目目大大于于等等于于模模型型中中方方程程个个数减数减1,即,即R G1 其中:其中:R施加于该方程的结构参数上的约束条件施加于该方程的结构参数上的约束条件 的数目的数目 G模型中方程个数模型中方程个数显然这种表述形式包含了前一种表述形式,是前者的推广,因为前者仅涉及系数的零约束(不包含某个变量,即其系数为0),而后者则包含了所有形式的约束
16、。第31页,本讲稿共74页第32页,本讲稿共74页例4.简单的凯恩斯收入决定模型对于消费函数,我们有:K=3,M=2,G2,KM=1=G1=1,因而恰好识别。对于收入恒等式,无需判别识别状态,因为恒等式通常不存在不可识别问题.第33页,本讲稿共74页2.识别的秩条件识别的秩条件另外一个准则是识识别别的的秩秩条条件件(rankcondition),这是一个充要条件,陈述如下:在在一一个个有有G个个方方程程的的模模型型中中,其其中中任任何何一一个个方方程程是是可可识识别别的的充充要要条条件件是是模模型型中中不不包包括括在在这这个个方方程程中中的的所所有有变变量量的的系系数数矩阵的秩等于矩阵的秩等于
17、G1。考虑一个有g个内生变量和k个前定变量的联立方程模型,其矩阵形式为其中是内生变量观测值向量(g1),是前定变量观测值向量(k1),是扰动项向量(g1),B是内生变量系数矩阵(gg),是前定变量系数矩阵(gk)。第34页,本讲稿共74页我们假定B是非奇异矩阵,因而能够解出,得到:不难看出,(1)和(2)式分别是模型的结构式和简化式。假定扰动项满足高斯马尔柯夫定理条件。为讨论识别问题,不失一般性,考虑(1)中第一个方程,令为B的第一行,为的第一行,将这两个向量分成两个分量,分别对应该方程中包括和未包括的变量,我们有第35页,本讲稿共74页对应个包括的变量,对应个不包括的变量,类似地,对应个包括
18、的变量,对应个不包括的变量。现在按照与相一致的划分方式对矩阵B和进行分块,我们有考虑矩阵D是对应于未包括的内生变量和前定变量的矩阵。第一个方程可识别的充分必要条件是:Rank(D)g1第36页,本讲稿共74页此条件亦称为识别的秩条件,与我们在本段开头给出的有关秩条件的文字表述是等价的。此命题的证明思路是,如果则表明存在一个非零向量,在这种情况下,我们能够找到这g1个方程的一个线性组合,组合的系数由向量的元素给出。当此线性组合被加到第一个方程时,就得到一个与线性组合方程统计形式相同的方程,因而不可能识别第一个方程的参数。应用识别的秩条件,就可以确定所考虑的方程是否可识别,这是阶条件无法做到的。可
19、是,应用秩条件要比阶条件复杂得多,需要计算矩阵的秩,也就是计算大量的行列式。为简化计算,实际应用中可按下列步骤进行:第37页,本讲稿共74页(1)将联立方程模型各方程写成模型中全部变量是否包括其中的表格形式;(2)删去要检验可否识别的方程所在行;(3)捡出该行中所有为0的元素所在列,构成一个行数为(g1)的矩阵,其中g为内生变量的个数;(4)如果从这个矩阵中可找出(g1)个不全为0的行和(g1)个不全为0的列,并且不存在全部参数值成比例的列或行,则该方程可识别,否则不可识别。第38页,本讲稿共74页例:例:设有宏观经济模型如下,模型中有7个内生变量,3个外生变量。内生变量外生变量C实际消费G实
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第七 联立方程 模型 优秀 课件
限制150内