第02章 经济时间序列的季节调整、分解和平滑方法ctv.pptx
《第02章 经济时间序列的季节调整、分解和平滑方法ctv.pptx》由会员分享,可在线阅读,更多相关《第02章 经济时间序列的季节调整、分解和平滑方法ctv.pptx(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第二章 经济时间序列的 季节调整、分解与平滑 本章主要介绍经济时间序列的分解和平滑方本章主要介绍经济时间序列的分解和平滑方法。时间序列分解方法包括季节调整和趋势分解,法。时间序列分解方法包括季节调整和趋势分解,指数平滑是目前比较常用的时间序列平滑方法。指数平滑是目前比较常用的时间序列平滑方法。1 经济指标的月度或季度时间序列包含经济指标的月度或季度时间序列包含4种变动要素:种变动要素:长期趋势要素长期趋势要素T:代表经济时间序列长期的趋势特性。循环要素循环要素C:以数年为周期的一种周期性变动,它可能是一种景气变动、经济变动或其他周期变动,它可以代表经济或某个特定工业的波动。季节变动要素季节变
2、动要素S:每年重复出现的循环变动,以12个月或4个季度为周期的周期性影响,是由温度、降雨、年中的月份,假期和政策等引起的。不规则要素不规则要素I:其变动无规则可循,这类因素是由偶然发生的事故引起的,如:故障、罢工、意外事故、地震、水灾、恶劣气候、战争、法令更改、测定误差等。2.1 经济时间序列的分解2图图图图1 1 我国工业总产值的时间序列我国工业总产值的时间序列我国工业总产值的时间序列我国工业总产值的时间序列 Y Y 图形图形图形图形 图图图图2 2 工业总产值的趋势工业总产值的趋势工业总产值的趋势工业总产值的趋势 循环要素循环要素循环要素循环要素 TC TC 图形图形图形图形 图图图图3
3、3 工业总产值的季节变动要素工业总产值的季节变动要素工业总产值的季节变动要素工业总产值的季节变动要素 S S 图形图形图形图形 图图图图4 4 工业总产值的不规则要素工业总产值的不规则要素工业总产值的不规则要素工业总产值的不规则要素 I I 图形图形图形图形 3季节调整的概念 季节性变动的发生,不仅是由于气候的直接影响,而季节性变动的发生,不仅是由于气候的直接影响,而且社会制度及风俗习惯也会引起季节变动。经济统计中的且社会制度及风俗习惯也会引起季节变动。经济统计中的月度和季度数据或大或小都含有季节变动因素,月度和季度数据或大或小都含有季节变动因素,以月份或以月份或季度作为时间观测单位的经济时间
4、序列通常具有一年一度季度作为时间观测单位的经济时间序列通常具有一年一度的周期性变化,这种周期变化是由于季节因素的影响造成的周期性变化,这种周期变化是由于季节因素的影响造成的,在经济分析中称为季节性波动。经济时间序列的季节的,在经济分析中称为季节性波动。经济时间序列的季节性波动是非常显著的,它往往遮盖或混淆经济发展中其他性波动是非常显著的,它往往遮盖或混淆经济发展中其他客观变化规律,以致给经济增长速度和宏观经济形势的分客观变化规律,以致给经济增长速度和宏观经济形势的分析造成困难和麻烦。因此,在进行经济增长分析时,必须析造成困难和麻烦。因此,在进行经济增长分析时,必须去掉季节波动的影响,将季节要素
5、从原序列中剔除,这就去掉季节波动的影响,将季节要素从原序列中剔除,这就是所谓的是所谓的“季节调整季节调整”(Seasonal Adjustment)。4 2.22.2.1.1 X-11X-11季节调整方法季节调整方法季节调整方法季节调整方法 2.2 经济时间序列的季节调整方法 X-11方法是基于移动平均法的季节调整方法。它的特方法是基于移动平均法的季节调整方法。它的特征在于除了能适应各种经济指标的性质,根据各种季节调征在于除了能适应各种经济指标的性质,根据各种季节调整的目的,选择计算方式外,在不作选择的情况下,也能整的目的,选择计算方式外,在不作选择的情况下,也能根据事先编入的统计基准,按数据
6、的特征自动选择计算方根据事先编入的统计基准,按数据的特征自动选择计算方式。在计算过程中可根据数据中的随机因素大小,采用不式。在计算过程中可根据数据中的随机因素大小,采用不同长度的移动平均,随机因素越大,移动平均长度越大。同长度的移动平均,随机因素越大,移动平均长度越大。X-11方法是通过几次迭代来进行分解的,每一次对组成因方法是通过几次迭代来进行分解的,每一次对组成因子的估算都进一步精化。子的估算都进一步精化。5 2.2.22.2.2X12X12季节调整方法季节调整方法季节调整方法季节调整方法 美国商务部国势普查局的美国商务部国势普查局的X12季节调整程序是在季节调整程序是在X11方方法的基础
7、上发展而来的,包括法的基础上发展而来的,包括X11季节调整方法的全部功季节调整方法的全部功能,并对能,并对X11方法进行了以下方法进行了以下3方面的重要改进:方面的重要改进:(1)扩展了贸易日和节假日影响的调节功能,增加了季扩展了贸易日和节假日影响的调节功能,增加了季节、趋势循环和不规则要素分解模型的选择功能;节、趋势循环和不规则要素分解模型的选择功能;(2)新的季节调整结果稳定性诊断功能;新的季节调整结果稳定性诊断功能;(3)增加增加X12-ARIMA模型的建模和模型选择功能。模型的建模和模型选择功能。6 X12季节调整方法的核心算法是扩展的季节调整方法的核心算法是扩展的X11季节调整程序。
8、季节调整程序。共包括共包括4种季节调整的分解形式:乘法、加法、伪加法和对数种季节调整的分解形式:乘法、加法、伪加法和对数加法模型。注意采用乘法、伪加法和对数加法模型进行季节调加法模型。注意采用乘法、伪加法和对数加法模型进行季节调整时,时间序列中不允许有零和负数。整时,时间序列中不允许有零和负数。加法模型加法模型 (2.2.1)乘法模型:乘法模型:(2.2.2)对数加法模型:对数加法模型:(2.2.3)伪加法模型:伪加法模型:(2.2.4)7例例例例2.1 2.1 利用利用利用利用X12X12加法模型进行季节调整加法模型进行季节调整加法模型进行季节调整加法模型进行季节调整 图图图图2.1a 2.
9、1a 社会消费品零售总额原序列社会消费品零售总额原序列社会消费品零售总额原序列社会消费品零售总额原序列 图图图图2.1b 2.1b 社会消费品零售总额的社会消费品零售总额的社会消费品零售总额的社会消费品零售总额的TCI TCI 序列序列序列序列8 图图图图2.1d 2.1d 社会消费品零售总额社会消费品零售总额社会消费品零售总额社会消费品零售总额 I I 序列序列序列序列图图图图2.1c 2.1c 社会消费品零售总额的社会消费品零售总额的社会消费品零售总额的社会消费品零售总额的TCTC序列序列序列序列9 TRAMO(Time Series Regression with ARIMA Noise
10、,Missing Observation,and Outliers)用来估计和预测具有缺失用来估计和预测具有缺失观测值、非平稳观测值、非平稳ARIMA误差及外部影响的回归模型。它能够误差及外部影响的回归模型。它能够对原序列进行插值,识别和修正几种不同类型的异常值,并对原序列进行插值,识别和修正几种不同类型的异常值,并对工作日变化及复活节等特殊回归因素及假定为对工作日变化及复活节等特殊回归因素及假定为ARIMA过程过程的误差项的参数进行估计。的误差项的参数进行估计。SEATS(Signal Extraction in ARIMA Time Series)是基于是基于ARIMA模型来对时间序列中不
11、可观测成分进行估计。模型来对时间序列中不可观测成分进行估计。这两个程序往往联合起来使用,先用这两个程序往往联合起来使用,先用TRAMO对数据进对数据进行预处理,然后用行预处理,然后用SEATS将时间序列分解为趋势要素、循环将时间序列分解为趋势要素、循环要素、季节要素及不规则要素要素、季节要素及不规则要素4个部分。个部分。2.2.3 TRAMO/SEATS2.2.3 TRAMO/SEATS方法方法方法方法10 也分乘法模型和加法模型。X-12法与移动平均法的最大不同是:X-12法中季节因子在不同年份是不同的,而在移动平均法中,季节因子被假设为是相同的。2.2.4 2.2.4 移动平均方法移动平均
12、方法移动平均方法移动平均方法 11 本节主要介绍利用本节主要介绍利用EViews软件对一个月度或季度时间序软件对一个月度或季度时间序列进行季节调整的操作方法。在列进行季节调整的操作方法。在EViews工作环境中,打开一工作环境中,打开一个月度或季度时间序列的工作文件,双击需进行数据处理的个月度或季度时间序列的工作文件,双击需进行数据处理的序列名,进入这个序列对象,在序列窗口的工具栏中单击序列名,进入这个序列对象,在序列窗口的工具栏中单击Proc按钮将显示菜单:按钮将显示菜单:2.2.2.2.5 5 季节调整相关操作季节调整相关操作季节调整相关操作季节调整相关操作(EViews(EViews软件
13、软件软件软件)12 1.X111.X11方法方法方法方法 X-11法是美国商务部标准的季节调整方法法是美国商务部标准的季节调整方法(乘法模型、加法乘法模型、加法模型模型),乘法模型适用于序列可被分解为季节调整后序列(趋势,乘法模型适用于序列可被分解为季节调整后序列(趋势循环循环不规则要素不规则要素项)与季节项的乘积,加法模型适用于序列项)与季节项的乘积,加法模型适用于序列可被分解为季节调整后序列与季节项的和。乘法模型只适用于可被分解为季节调整后序列与季节项的和。乘法模型只适用于序列值都为正的情形。序列值都为正的情形。13 2.2.Census X12Census X12方法方法方法方法 EVi
14、ews是是将将美美国国国国势势调调查查局局的的X12季季节节调调整整程程序序直直接接安安装装到到EViews子子目目录录中中,建建立立了了一一个个接接口口程程序序。EViews进进行季节调整时将执行以下步骤:行季节调整时将执行以下步骤:1给出一个被调整序列的说明文件和数据文件;给出一个被调整序列的说明文件和数据文件;2利用给定的信息执行利用给定的信息执行X12程序;程序;3返返回回一一个个输输出出文文件件,将将调调整整后后的的结结果果存存在在EViews工工作文件中。作文件中。X12的的EViews接口菜单只是一个简短的描述,接口菜单只是一个简短的描述,EViews还还提供了一些菜单不能实现的
15、接口功能,更一般的命令接口程提供了一些菜单不能实现的接口功能,更一般的命令接口程序。序。14 调用调用X12季节调整过程,在序列窗口选择季节调整过程,在序列窗口选择Procs/Seasonal Adjustment/Census X12,打开一个对话框:,打开一个对话框:153.3.移动平均方法移动平均方法移动平均方法移动平均方法 16 Tramo(Time Series Regression with ARIMA Noise,Missing Observation,and Outliers)是是对对具具有有缺缺失失观观测测值值,ARIMA误误差差、几几种种外外部部影影响响的的回回归归模模型型
16、完完成成估估计计、预预测测和和插插值的程序。值的程序。Seats(Signal Extraction in ARIMA Time Series)是是基基于于ARIMA模模型型的的将将可可观观测测时时间间序序列列分分解解为为不不可可观观测测分分量量的的程程序序。这两个程序是有这两个程序是有Victor Gomez 和和Agustin Maravall 开发的。开发的。当选择了当选择了Pross/Seasonal Adjustment/Tramo Seats 时,时,EViews执行外部程序,将数据输给外部程序,然后将结果返执行外部程序,将数据输给外部程序,然后将结果返回回EViews。4.tra
17、mo/Seats4.tramo/Seats方法方法方法方法 17182.3 趋势分解趋势分解 本章第本章第2节介绍的季节调整方法可以对经济时间序列进节介绍的季节调整方法可以对经济时间序列进行分解,但在季节调整方法中,趋势和循环要素视为一体不行分解,但在季节调整方法中,趋势和循环要素视为一体不能分开。本节专门讨论如何将趋势和循环要素进行分解的方能分开。本节专门讨论如何将趋势和循环要素进行分解的方法。测定长期趋势有多种方法,比较常用的方法有回归分析法。测定长期趋势有多种方法,比较常用的方法有回归分析方法、移动平均法、阶段平均法方法、移动平均法、阶段平均法(phase average,PA方法方法)
18、、指数平滑方法、指数平滑方法、HP滤波方法和频谱滤波方法(滤波方法和频谱滤波方法(frequency(band-pass)filer,BP滤波)。本节主要介绍滤波)。本节主要介绍HP滤波方法。滤波方法。192.3.1 Hodrick-Prescott2.3.1 Hodrick-Prescott(HPHP)滤波滤波滤波滤波 在宏观经济学中,人们非常关心序列组成成分中的长期在宏观经济学中,人们非常关心序列组成成分中的长期趋势,趋势,Hodrick-Prescott滤波是被广泛使用的一种方法。该滤波是被广泛使用的一种方法。该方法在方法在Hodrick and Prescott(1980)分析战后美国
19、经济周期的分析战后美国经济周期的论文中首次使用。我们简要介绍这种方法的原理。论文中首次使用。我们简要介绍这种方法的原理。设设Yt是包含趋势成分和波动成分的经济时间序列,是包含趋势成分和波动成分的经济时间序列,YtT是是其中含有的趋势成分,其中含有的趋势成分,YtC是其中含有的波动成分。则是其中含有的波动成分。则 (2.3.1)计算计算HP滤波就是从滤波就是从Yt中将中将YtT 分离出来分离出来。20 一般地,时间序列一般地,时间序列Yt中的不可观测部分趋势中的不可观测部分趋势YtT常被定常被定义为下面最小化问题的解:义为下面最小化问题的解:(2.3.2)其中:其中:c(L)是延迟算子多项式是延
20、迟算子多项式 (2.3.3)将式将式(2.3.3)代入式代入式(2.3.2),则,则HP滤波的问题就是使下滤波的问题就是使下面损失函数最小,即面损失函数最小,即 (2.3.4)21 最小化问题用最小化问题用c(L)YtT2 来调整趋势的变化,并随着来调整趋势的变化,并随着 的增的增大而增大。这里存在一个权衡问题,要在趋势要素对实际序列大而增大。这里存在一个权衡问题,要在趋势要素对实际序列的跟踪程度和趋势光滑度之间作一个选择。的跟踪程度和趋势光滑度之间作一个选择。=0 时,满足最小时,满足最小化问题的趋势等于序列化问题的趋势等于序列Yt;增加时,估计趋势中的变化总数增加时,估计趋势中的变化总数相
21、对于序列中的变化减少,即相对于序列中的变化减少,即 越大,估计趋势越光滑;越大,估计趋势越光滑;趋趋于无穷大时,估计趋势将接近线性函数。一般经验地,于无穷大时,估计趋势将接近线性函数。一般经验地,的取的取值如下:值如下:22 使用使用Hodrick-Prescott滤波来平滑序列,选择滤波来平滑序列,选择Proc/Hodrick Prescott Filter出现下面的出现下面的HP滤波对话框:滤波对话框:首先对平滑后的序列给一个名字,首先对平滑后的序列给一个名字,EViews将默认一个名字,将默认一个名字,也可填入一个新的名字。然后给定平滑参数的值,年度数据取也可填入一个新的名字。然后给定平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第02章 经济时间序列的季节调整、分解和平滑方法ctv 02 经济 时间 序列 季节 调整 分解 平滑 方法 ctv
限制150内