倒车雷达超声波测距毕设毕业论文.doc
《倒车雷达超声波测距毕设毕业论文.doc》由会员分享,可在线阅读,更多相关《倒车雷达超声波测距毕设毕业论文.doc(34页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、济南职业学院 毕业设计(论文)题 目: 超声波测距倒车雷达设计 系 部: 电子工程系 专 业: 电气自动化 学 号: 201208022116 学生姓名: 陈泰 指导教师: 郭振慧 职 称: 讲师 二O一五年四月二日济南职业学院毕业论文(设计)任务书 课题名称:_ 超声波测距倒车雷达设计 系 部: 电子工程系 专 业: 电气自动化 姓 名: 陈泰 学 号:_ 201208022116 指导教师: 郭振慧 二O一五年四月二日超声波倒车雷达设计摘要 本次设计采用单片机STC89C52来控制整个超声波系统。由单片机控制产生超声波并且控制定时器开始计时,当接收电路接收到回波时,定时器产生中断,停止计时
2、。信号发出到接收到回波信号所用的时间是由单片机计算完成,从而得到实测的距离。距离显示在LED数码管上,并控制报警电路。整个硬件电路由电源电路、按键电路、显示电路、报警电路以及超声波模块构成。按键电路用来控制报警距离的增加或者减少,方便且实用。本次设计具有容易控制和工作稳定等优点。关键词:STC89C52 超声波 测距 目录第1章 前言11.1 课题研究的目的及意义11.2 超声波测距系统的国内外现状11.3 设计的要求1第2章 系统总体方案的选择22.1超声波的简介22.2 超声波测距系统原理22.3 方案选择2第3章 整体硬件电路设计43.1单片机系统电路43.1.1复位电路43.1.2 时
3、钟电路53.2 蜂鸣器报警电路63.3 按键电路63.4 超声波发射电路73.5 超声波接收电路73.6 超声波模块83.7 显示电路83.8 电源电路93.9 系统的整体电路10第4章 软件部分114.1 主程序设计114.2 中断处理程序124.3 距离的计算及显示电路的设计134.4 报警电路的设计144.5 按键电路的设计14第5章 硬件的组装及调试15结论17致谢18参考文献19附录20第1章 前言1.1 课题研究的目的及意义经济的发展带来社会的进步,超声波测距被频繁的用在人们的日常工作之中。超声波拥有测量稳定、穿透能力强、易接收等特点,同时超声波测距不用接触到物体,适用于了情况比较
4、复杂的环境。还因为超声波测距易于控制,并且达到了所要求测量的工业指标,所以超声波测距被用于获取距障碍物的位置信息、移动机器人、汽车倒车雷达等方面的研究。1.2 超声波测距系统的国内外现状国内超声波测距主要针对固体和液体的研究,在测距的稳定性和精确性上有了很大程度的提高。并且随着科学技术的不断提高,超声波技术在工业的自动控制、汽车倒车系统等方面也有深入的研究。此外在医学、生物科学等领域也有突出的地位。国外也做了大量的研究是关于提高超声波测距。Figneroa JF,Lamancusa JS在计算时间方法上又有了新的突破,传播时间的获得是通过相加峰值时延和相位时延。1.3 设计的要求设计一个超声波
5、测距系统,距离设定一个限定值,当超声波探头与被测物体的距离小于设定值时,两者的距离显示在四位七段数码管上并开始报警。设计主要需求如下:(1) 电路测量的距离为6m。并且误差率不得超过0.03%。(2) 与被测物体的距离用数码管显示,并有报警功能。(3)设置按键电路,能对设置的最小报警距离进行改变。第2章 系统总体方案的选择2.1超声波的简介我们知道,声音的发出是产生了振动。我们知道赫兹定义为声音的振动频率,2020000赫兹的振动频率是人的耳朵可以接收到的,高于20000赫兹的,我们定义为超声波。超声波具有穿透性好、容易获取等特点,在医学、工业、军事、农业等方面有着巨大的研究价值。2.2 超声
6、波测距系统原理在超声波测距的过程中,超声波的发射端接收到的脉冲为一系列的方波。时间间隔大小为方波的宽度,距离越远,脉冲的宽度越大。脉冲的个数也随着测距的远近而变化。超声波测距的方法是:测量出输出脉冲的宽度即发出超声波到接收超声波的时间间隔t,利用公式S=12vt,算出被测距离。超声波的算法设计:X1是超声波发出的时间,X2是超声波接收的时间。我们知道声波的传播速度为340m/s,所以被测距离L如图2-1。 图21测距原理2.3 方案选择 单片机 控制器 本方案选择STC89C52单片机来控制整个电路,测得的距离显示在四位数码管上,并根据所设置的报警距离开始报警。超声波的发射信号由单片机发出并送
7、到发射电路上,发出超声波。接收电路由CX20106A芯片和接收探头构成。报警电路中,电阻R15为限流电阻、晶体三级管为驱动蜂鸣器。本设计将发射探头和接收探头分离,这样可以避免信号发生混叠干扰,从而使的测量数据更加的精确。根据以上设计如图2-2。 单片机 控制器 数码管显示超声波的接收 蜂鸣器报警超声波的发射 图2-2 系统框图结合实际需求,在网上查找了相关的资料,决定选用HC-SR04超声波集成模块。此模块发出的超声波能够测量的范围在5m到2cm之间,能够准确到3mm,它的发射角不大于15,有利于准确的测量。并且工作频率在39 kHz41 kHz左右,完全符合本次设计的40kHz的工作频率。由
8、于超声波的发射探头和接收探头是放在同一水平直线上的,而且超声波信号在传播的过程中会发生衰减,所以两个探头不能距离太远。又因为如果两个探头离的太近会产生信号的干扰,测量出来的结果会产生误差。 第3章 整体硬件电路设计3.1单片机系统电路 本次设计采用了高速、功耗低的STC89C52单片机。这款STC89C52单片机在功能上和以前51单片机的一样,并且还扩展了功能,使得用起来更加的方便。 图3-1 STC89C52引脚图3.1.1复位电路在单片机规格书中,有这样一段描述:如果当RST端口持续两个周期以上的高电平,系统就会复位。电路如下: 图3-2 复位电路在VCC供电时,RST的电压和VCC一样。
9、随着从 C3电容的充电,RST电位开始下降,并形成一个正向的脉冲,只要脉冲宽度足够就可以实现复位。关于RC的计算: (3-1) 机械周期=震荡周期*12 (3-2)关于复位时间t的计算: (3-3)查看相关资料知道,当REST上的电压高于0.7Vcc时,就可以被看为高电平。本次用的系统电压为5V,所以REST上超过3.5V就可以看成高电平,并且高电平的时间超过2us,单片机就可以复位。最后计算RST的电位,复位电路为一阶RC电路,所以电压与电流有一下关系: (3-4)因为;所以。设Reset pin 电压为,那么: 所以, 当的时,。当且仅当 时,系统实现复位,并且电阻和电容RC满足条件。所以
10、用R=10K、C=10F符合要求。3.1.2 时钟电路 时钟电路的两个引脚分别接入XTAL1端口和XTAL2端口。在两个引脚之间接入一个12M的晶振,两个22PF的电容和晶振并联后接地。电容的可以使电路更加的稳定,电路如下: 图3-3 时钟电路3.2 蜂鸣器报警电路报警电路由蜂鸣器、三极管、电阻构成。蜂鸣器由三极管驱动。R15为1k的电阻,作用是保护蜂鸣器。单片机P36端口和电阻R15连接,当单片机P36口发送一个低电平到报警电路时,NPN型三极管开始驱动蜂鸣器进行报警,报警电路如图3-4。 图3-4报警电路3.3 按键电路 按键电路由三个切换开关,一个LED设置指示灯和一个限流电阻构成。电路
11、图3-5如下: 图3-5按键电路按键电路的功能是:当按下k1键位时,指示灯亮起,开始设置报警距离。K2按下,报警距离从原来的距离开始增大,当按下K3键位报警距离开始减小。 限流电阻R14的计算: R(U2U1)I (3-5)式中U2为提供的5V电压,U1和I分别为发光二极管两端的电压、电流。此次设置指示灯用的是绿色发光二极管,正向压降UF为2v,工作电流IF为20毫安。所以R14=(5-2)/0.02=150。3.4 超声波发射电路发射电路主要由5个非门组成74LS04芯片电路组成。单片机发出的40 kHz的脉冲不能直接由发射电路发出,要经过足够倍数的放大后,才能由发射探头发出。所以74LS0
12、4反相器其实就是一个放大电路。超声波发射电路如图3-6所示。 图3-6 发射电路R16和R17为1K的电阻,能够74LS04芯片放大的输出能力。Vcc为整个电路提供电源。电路工作时,单片机产生的40 kHz由P0.1端口发送到发射电路,信号由74LS04芯片放大并由超发出。3.5 超声波接收电路由于超声波在传播的过程中是有衰减的,所以在中长距离的测量中,反射回来的信号被衰减了,所以有必要进行信号的放大,放大的倍数还比较大。查看相关资料,此次设计采用的是CX20106A芯片,此芯片具有信号放大、峰值检波、比较等功能。芯片CX20106A电路构成了主要的接收电路,比较完信号后会产生一个低电平发送到
13、单片机进行中断,中断以后,开始进行数据的处理。如图3-7所示。 图3-7接收电路3.6 超声波模块HR-SR04超声波模块包含了接收探头、发射探头、74LS04芯片放大电路和CX20106A芯片电路。超声波模块如图3-8所示。 图3-8超声波集成模块HR-SR04有四个连接口,分别为VCC、GND、TRIG、ECHO四个接口。VCC:提供5V的电源GND:地线TRIG:信号的输入端口ECHO:信号的输出端口工作原理:此模块能够发出8个40 kHz的方波脉冲,并且可以自动检测有没有信号的返回。3.7 显示电路 本次设计的显示电路由四位七段数码管、三极管和三个电阻组成。数码管由三级管来驱动,限流电
14、阻R11、R12和R13是保护整个显示电路,如图3-9。 图3-9 显示电路 LED是发光二极管的简称,八只发光二极管构成了数码管,国际上记作:a、b、c、d、e、f、g、dp。dp为小数点。数码管要能够正常的显示就必须要有驱动电路来驱动,本次设计采用了动态的方式。动态驱动的优点有:节省了大量的I/O口,并且消耗低,所以本次设计采用动态的驱动方式,四位数码管的接线方式为共阳极的接法。3.8 电源电路电路由一个5V电源、一个发光二极管和限流电阻组成。发光二极管采用的是红色,作为电源指示灯,电路如图3-10所示。 图3-10 电源电路 关于发光二极管限流电阻R2的计算:能加到发光二极管两边的电压为
15、5V,使用时要串联一个限流电阻用以保护发光二极管。电阻R2的计算为: R2(EUF)IF (3-6)式中的E为电源电压,UF为发光二极管的两端电压,IF为发光二极管的两端电流。 发光二极管根据用途不同,颜色也不同。红色发光二极管的工作电压是2V。发光二极管的电流大概为20mA,本次设计采用的是红色发光二极管。采用的电源电压为5V,电源电压减红色二极管的两端电压就是电阻R2的电压,再用R2两端的电压除以红色二极管两端电流就能计算出R2。所以R2=(5-2)/0.02=150。3.9 系统的整体电路 图3-11 系统电路图整个系统由电源电路提供5V电源,数据由超声模块传到单片机进行处理,最后显示在
16、数码管上并开始报警。 第4章 软件部分本次设计采用的思想是分块进行设计及编写程序代码。程序主要分为主程序和中断程序。主程序包括初始化单片机STC89C53、超声波的发出和接收、距离的计算、按键电路的设置、距离的显示和蜂鸣器的报警等。4.1 主程序设计主程序是初始化单片机STC89C52,然后置1回波接收位。同时通过端口P3.0发送一个低电平来启动超声波的发射电路,并且开启定时器T0开始计时。这时调动计算子程序根据记录的T0时间计算距离,计算完成后,调用子程序显示距离。与此同时,调用声音处理程序进行蜂鸣器的报警。主程序根据反射回来的信号继续工作,如果回波标志位为0则说明成功接收到了回波信号,这时
17、开始置位并且发送一个低电平到发射电路,就这样不停的循环,实现测距功能。根据以上描述主程序的流程图如图4-1所示。 开始系统初始化超声波模块复位发射超声波并启动T0开中断接收到回波的同时中断停止计算测量距离显示距离同时蜂鸣器报警报警 延时 图4-1 主程序流程图4.2 中断处理程序负责计算距离的程序是中断处理程序。根据前面的分析,当接收电路接收到回波信号以后,同样会产生一个低电平送至单片机的P3.1端口。这时转入中断处理程序,定时器T0以及外部中断0就立刻关闭。读取时间值,并给接收回波的标志位清零。本设计的中断处理程序的程序流程图如图4-2所示。计时停止指定的报警声开启中断关闭返回距离计算处理显
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 倒车 雷达 超声波 测距 毕业论文
限制150内