基于基本的传感器原理实现转换电路仿真及电荷放大器电路的设计与焊接--学位论文.doc
《基于基本的传感器原理实现转换电路仿真及电荷放大器电路的设计与焊接--学位论文.doc》由会员分享,可在线阅读,更多相关《基于基本的传感器原理实现转换电路仿真及电荷放大器电路的设计与焊接--学位论文.doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、燕山大学课程设计说明书第一章 摘要本课程设计基于基本的传感器原理实现转换电路仿真及电荷放大器电路的设计与焊接。设计内容及要求如下:内容及安排: 1. Multisim仿真软件学习; 2.转换电路仿真调试及序理分析:(1)基本电路(2)低频功率放大器(3)交流电桥电路(4)整流电路(5)二阶低通滤波电路(6)二阶帯通电路(7)比例放大电路(8)直流差动电桥放大电路(9)单臂直流电桥电路(10)二阶有源低通滤波电路 3.电荷放大器电路设计与焊接; 4.电路测试及考核。要求:(1)认真学习仿真软件; (2)分析各转换电路的原理及其相关的结果并进行调试; (3)撰写报告,进行总结。关键字 Multis
2、im仿真软件 转换电路 电荷放大器第二章 引言传感器技术是利用各种功能材料实现信息检测的一门综合技术学科,是在现今科学领域中实现信息化的基础技术之一。现代测量、控制与自动化技术的飞速发展,特别是电子信息科学的发展,极大地促进了现代传感器技术的发展。同时我们也看到,传感器在日常生活中的运用越来越广泛,可以说它已成为了测试测量不可或缺的环节。因此,学习、研究并在实践中不断运用传感器技术是具有重大意义的。随着传感器的应用与发展,其种类也在不断地增加。其中一些比较常见的有电阻应变式传感器、电感式传感器、电容式传感器、压电式传感器、磁电式传感器、光电式传感器等,其中应用最广泛的是电阻应变式传感器。电阻应
3、变式传感器(straingauge type transducer )以电阻应变计为转换元件的电阻式传感器。电阻应变式传感器由弹性敏感元件、电阻应变计、补偿电阻和外壳组成,可根据具体测量要求设计成多种结构形式。弹性敏感元件受到所测量的力而产生变形,并使附着其上的电阻应变计一起变形。电阻应变计再将变形转换为电阻值的变化,从而可以测量力、压力、扭矩、位移、加速度和温度等多种物理量。传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几
4、十倍)、横向效应小等优点。第3章 基本原理3.1传感器基本原理国家标准CB7665-87对传感器的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受被测量的信息,并能将检测感受到的信息,按一定规律变换成电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求,是实现自动检测和自动控制的首要环节。传感器一般由敏感元件、转换元件、信号转换电路三部分组成,其工作机理是基于各种效应和定律,由此启发人们进一步探索具有新效应的敏感功能材料,并以此研制出具有新原理的新型物性型传感器件,这是发展高性能
5、、多功能、低成本和小型化传感器的重要途径。结构型传感器发展得较早,目前日趋成熟。结构型传感器,一般说它的结构复杂,体积偏大,价格偏高。物性型传感器大致与之相反,具有不少诱人的优点,加之过去发展也不够。3.2 应变片测量原理电阻应变片(金属丝、箔式或半导体应变片)粘贴在测量压力的弹性元件表面上,当被测压力变化时,弹性元件内部应力变形,这个变形应力使应变片的电阻产生变形,根据所测电阻变化的大小来测量未知压力,也实现本次设计未知质量的检测。 设一根电阻丝,电阻率为,长度为l,截面积为S,在未受力时的电阻值为 R= - 图一 金属丝伸长后几何尺寸变化 如图一所示,电阻丝在拉力F作用下,长度l增加,截面
6、S减少,电阻率也相应变化,将引起电阻变化R,其值为 R/R=S/S/ -对于半径r为的电阻丝,截面面积S=,则有s/s=2r/r。令电阻丝的轴向应变为=l/l,径向应变为r/r=(l/l)= ,由材料力学可知,为电阻丝材料的泊松系数,经整理可得 R/R=(1+2)+/) - 通常把单位应电所引起的电阻相对变化称为电阻丝的灵敏系数,其表达式为 K(1+2) - 从可以明显看出,电阻丝灵敏系数K由两部分组成:受力后由材料的几何尺寸受力引起(1+2);由材料电阻率变化引起的(/) -1。对于金属丝材料,(/) -1项的值比(1+2)小很多,可以忽略,故K=1+2。大量实验证明,在电阻丝拉伸比例极限内
7、,电阻的相对变化与应变成正比,即为常数。可写成 R/R=K -第四章 电路仿真与分析4.1基本的电路原理的仿真直流叠加定理叠加定理验证电路先测R3两端的电压36.666V,这个电压为V1和I1共同作用的结果。叠加定理验证电路 1将I1断开,V1单独供电的验证电路,R3两端为3.333V.叠加定理验证电路 2将V1短路,I1单独供电的验证电路,R3两端为33.333V。叠加定理验证电路 3结果分析 V1和I1共同作用时R3两端的电压为36.666V,V1和I1单独工作时R3两端的电压分别为3.333V和33.333V,这两个数值之和等于前者,符合叠加定理的描述。戴维南定理戴维南定理仿真电路 分别
8、测量流过R4的电流和R4两端的电压,万用表显示IR4=16.667 mAUR4=3.333 V戴维南定理仿真电路 1 断开负载R4,测量原来R4的电压为6V。 戴维南定理仿真电路 2 将直流电压源用导线替换掉,测原R4两端的电阻,测量结果为160.。戴维南定理仿真电路 3R4左边的电路等效为原R4两端电压和电阻串联形式,再与R4相连接。这时测量R4流过的电流和R4两端的电压分别为IR4=16.667 mAUR4=3.333 V戴维南定理仿真电路 4结果分析 前后步骤测量的两组数字基本一致,从而验证了戴维宁定理的正确性。4.2低频功率放大器闭合开关J1,观察放大器工作于乙类工作状态时的输出和输入
9、电压波形(下图1所示)。断开开关J1,观察输出和输入波形(下图2所示),与上述步骤观察的内容进行比较。图1 交越失真的波形图2 不失真的输出波形4.3交流电桥电路结果仿真仿真分析交流电桥平衡要满足两个条件。即相对两臂复阻抗的模之积相等,并且其副角之和相等。所以交流电桥的平衡比直流电桥的平衡要复杂得多。对于纯电阻交流电桥,由于应变片连接导线的分布电容,相当于在应变片上并联了一个电容,如图,所以在调节平衡时,除使用电阻平衡装置外,还要使用电容平衡装置。4.4整流电路结果仿真仿真结果分析R1是要求直流供电的负载电阻,四只整流二极管D1D4结成电桥的形式,固有桥式整流电路之称。在桥式整流电路中,二极管
10、D1D3和D2D4是两两轮流导通的。在电源的正负半周内电流通过电路时,负半周通过D2.4,正半周通过D1.3.通过负载R1的电流以及电压的波形如仿真图所示。显然,它们都是单方向的全波脉动波形4.5二阶低通滤波电路结果仿真仿真分析根据数字信号的知识可知,所有信号都是由无穷个正余弦信号叠加在一起得到,通过对信号进行快速傅里叶变换即可得到信号的频谱组成成分。通过仿真实验可知,要想达到较好的滤波效果,设置的截止频率必须大于信号基波频率的10 倍以上,具体的设置还要参考噪声的频率。4.6二阶带通电路仿真电路仿真分析二阶滤波器对于削减高频信号能起到更高的效果。这种类型的滤波器的波特图类似于一阶滤波器,只是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 基本 传感器 原理 实现 转换 电路 仿真 电荷 放大器 设计 焊接 学位 论文
限制150内