基于单片机的数字电压表的设计论文.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《基于单片机的数字电压表的设计论文.doc》由会员分享,可在线阅读,更多相关《基于单片机的数字电压表的设计论文.doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、目 录第一部分 设计任务与调研31.设计任务32.设计思路、方法33.与本课题相关的资料34.调研45.设计原理分析调研的目的和总结6第二部分 设计说明71.设计理论分析72.设计方案73.硬件电路设计84.LED显示系统设计145.系统程序的设计19第三部分 设计成果201.源程序212.软件仿真273.作品特点28第四部分 结束语29第五部分 致谢30第六部分 参考文献31第一部分 设计任务与调研1.设计任务 在电量及非电量的测量中,我们时常会用到电压表。过去大部分电压表还是模拟的,虽然精度较高但模拟电压表采用指针式,内部是磁电或者电磁式结构,响应比较慢。为了满足对测量速度的要求,目前许多
2、高速信号领域已广泛使应数字电压表。数字电压表的诞生打破了传统电子测量仪器的模式和格局,它显示清晰直观、读数准确。采用了先进的数显技术,大大地减少了人为因素所造成的测量误差。数字电压表把电子技术、计算技术、自动化技术的成果与精密的测量技术密切的结合在一起,成为仪器仪表领域中独立而完整的一个分支,数字电压表的出现标志着电子仪器领域的一场革命,也开创了现代电子测量技术的先河。 本设计利用51单片机和ADC0808设计一个直流电压表,能测量05V之间的直流电压值,测量结果用四位共阴极LED数码显示,能显示电压值的小数点后两位,当电压超出量程时报警电路报警。2.设计思路、方法 根据设计要求,选择AT89
3、C51单片机为核心控制器件。 A/D转换采用ADC0808实现,与单片机的接口为P1口和P2口的高四位引脚。 电压显示采用4位一体的LED数码管。 LED数码的段码输入,由并行端口P0产生:位码输入,用并行端口P2低四位产生。3.与本课题相关的资料 【1】单片机原理及应用.张迎新.北京.电子工业出版社 【2】模拟电子技术.苏士美.李伟.人民邮电出版社 【3】单片机基础.李广弟.北京航空航天大学出版社4.调研4.1数字电压表的特点(1)显示清晰直观,读数准确传统的模拟式仪表必须借助于指针和刻度盘进行读数,在读数过程中不可避免的会产生人为的测量误差。数字电压表则采用先进的数显技术,使测量结果一目了
4、然,只要仪表不发生跳读现象,测量结果就是唯一的。 新型数字电压表还增加了标志符显示功能,包括测量项目、符号单位和特殊符号,为解决DVM不能反映被测电压的连续变化过程以及变化趋势这一难题,一种“数字/模拟条图”仪表业已问世。“模拟图条”(AnalofBargraph)有双重含义:第一,被测量为模拟量;第二,利用条状图形来模拟被测量的大小及变化趋势。这类仪表将数字显示与高分辨率模拟条图显示集于一身,兼有DVM与模拟电压表之优点。智能数字电压表均带微处理器和标准接口,可配合计算机和打印机进行数据处理或自动打印,构成完整的测试系统。(2) 显示位数显示位数通常为3 1/2位、3 2/3位、3 3/4/
5、位、4 1/2位、4 3/4位、5 1/2位、6 1/2位、7 1/2位、8 1/2位共9种。判定数字仪表的位数有两条原则:能显示09所有数字的位是整数位;分数位的数值是以最大显示值中最高位数字为分子,用满量程时最高数字作分母。例如,某数字仪表的最大显示值为1999,满量程计数值为2000,这表明该仪表有3个整数位,而分数位的分子为1,分母是2,故称之为3 1/2位,读作三位半。(3)准确度高 准确度是测量结果中系统误差与随机误差的综合。(4)分辨率高 数字电压表在最低电压量程上末位1个字所代表的电压值,称为仪表的分辨力,它反映仪表灵敏度的高低。分辨力随显示位数的增加而提高。分辨率是指所能显示
6、的最小数字(零除外)与最大数字的百分比。例如3 1/2位DVM的分辨率为1/19990.05。需要指出,分辨力与准确度属于两个不同的观念。从测量角度看,分辨力是“虚”指标(与测量误差无关),准确度才是“实”指标(代表测量误差的大小)。(5)测量范围宽多量程DVM一般可测量01000V之间的直流电压,配上高压探头还可测上万伏的高压。(6)扩展能力强 在数字电压表的基础上,还可扩展成各种通用及专用数字仪表、数字多用表(DMM)和智能仪表,以满足不同的需要。数字电压表在每秒钟内对被测电压的测量次数,叫测量速率,单位是“次/S”。它主要取决于A/D转换器的转换速率,其倒数是测量周期。(8)输入阻抗高
7、数字电压表具有很高的输入阻抗,通常为10M10000M,最高可达1T。(9)集成度高,微功耗 新型数字电压表普遍采用CMOS大规模集成电路,整机功耗很低。(10)抗干扰能力强5 1/2位以下的DVM大多采用积分式A/D转换器,其串模抑制比、共模抑制比各别可达100dB、80120dB。高档DVM还采用数字滤波、浮地保护等先进技术,进一步提高了抗干扰能力,共模抑制比可达180dB。4.2数字仪表的发展趋势 采用新技术、新工艺,由LSI和VLSI构成的新型数字仪表及高档智能仪器的大量问世,标志着电子仪器领域的一场革命,也开创了现代电子测量技术的先河。具体来说测量控制与仪器仪表的国际发展趋势,可以总
8、结为以下主要特点: 1、技术指标不断提高,就如奥林匹克运动的口号是更高、更快、更强一样,测量控制与仪器仪表在提高测量控制的技术指标和功能上是永远的追求,测量控制与仪器仪表的技术指标水平是一个国家测量控制与仪器仪表水平的量化标志。提高产品环境适应性,根据不同用户的要求,有高温、高湿、高尘、腐蚀、振动、冲击、电磁场、辐射、深水、雨淋、高电压、低气压等条件下的适应性。 2、新的科学研究成果和发现如信息论、控制论、系统工程理论,微观和宏观世界研究成果及大量高新技术如微弱信号提取技术,计算机软、硬件技术,网络技术,激光技术,超导技术,纳米技术等均成为测量控制与仪器仪表科学技术发展的重要动力。仪器仪表不仅
9、本身已成为高技术的新产品,而且利用新原理、新概念、新技术、新材料和新工艺等最新科技成果集成的装置和系统层出不穷。3、测量单元微小型化、智能化测量控制与仪器仪表大量采用新的传感器、大规模和超大规模集成电路、计算机及专家系统等信息技术产品,不断向微小型化、智能化发展,从目前出现的“芯片式仪器仪表”,“芯片实验室”、“芯片系统”等看,测量单元的微小型化和智能化将是长期发展趋势。从应用技术看,微小型化和智能化测量单元的嵌入式连接和联网应用技术得到重视。4、测控范围向立体化、全球化扩展,测量控制向系统化、网络化发展随着仪器仪表所测控的既定区域不断向立体化、全球化甚至星球化发展,仪器仪表和测控装置已不再呈
10、单个装置形式,它必然向测控装置系统化、网络化方向发展。5、便携式、手持式以至个性化仪器仪表大量发展随着生产的发展和人民生活水平的提高,人们对自己的生活质量和健康水平日益关注,检测与人们生活密切相关的各类商品、食品质量的仪器仪表,预防和治疗疾病的各种医疗仪器是今后发展的一个重要趋势。科学仪器的现场化、实时在线化,特别是家庭和个人使用的健康状况和疾病警示仪器仪表将有较大发展。5.设计原理分析调研的目的和总结 通过制作简易的数字电压表,加深对所学专业知识的认知,提高分析,解决工程实际问题的能力,提高对单片机的应用能力,提高收集文献,资料的能力,从而达到综合运用所学的专业知识进行电子产品设计,制作与调
11、试的能力。 第二部分 设计说明1.设计理论分析1.1单片机AT89S51 AT89S51单片机是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4K bytes的可系统编程的Flash只读程序存储器,器件采用ATMEL公司的高密度,非易失性存储技术生产,兼容标准8051指令系统及引脚。它集Flash程序存储器,既可在线编程(ISP)也可用传统方法进行编程及通用8位微处理器于单片芯片中,ATMEL公司的功能强大,低价AT89S51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。 1.2 AT89S51的特点 40个引脚,4kBytesFlash片内程序存储器,1
12、28bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器此外,AT89S51设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。1.3 ADC0809工作原理 8路模拟信号由ADC0809的IN0IN7端输入,
13、AT89S51单片机的ALE端口输出的脉冲信号送ADC0809的10脚作为ADC的时钟信号(产生CLK信号的方法就得用软件来产生)。A/D转换完成之后,从EOC端返回AT89S51一个转换结束信号,单片机随即用信号将A/D转换的数字输出从D0D7端经P0口数据总线读入自己的存储器中。A/D转换过程全部结束。再经软件程序转换成ag7段码输出,驱动LED数码管。各位数码管由位控信号P3.0、P3.1、P3.2、P3.3控制,由74LS245反相驱动将依次巡回点亮数码管。2. 设计方案 将数据采集接口电路输入电压传入ADC0809数模转换元件经转换后通过D0至D7与单片机P0至P7口连接,把转换完的
14、模拟信号以数字信号的信号的形式传给单片机,信号经过单片机处理从LED数码显示管显示。拨码开关连P3口,实现通道选择。P2口接数码管位选,P1接数码管,实现数据的动态显示,如下图1.3所示。选择MCS-51系列单片机芯片,选用8段共阴极LED数码管实现电压显示,选用独立式按键作为程序的跳转与选择,利用ADC0809作为数模转换芯片,利用P0至P4的各个串口来进行不同设备间的连接,计算机进行汇编,仿真。 图 2系统总体方案结构图3. 硬件电路设计 3.1 复位电路 89C51单片机的复位是由外部的复位电路来实现的。最简单的上电自动复位电路,是通过外部复位电路的电容充电来实现的。只要Vcc的上升时间
15、不超过1ms,就可以实现自动上电复位。当时钟频率选用6MHz时,C取22uF,R取1K。除上电复位外,有时还需要按键手动复位。按键手动复位有电平方式和脉冲方式两种。其中电平复位是通过RST端经电阻和电源Vcc接通而实现的,按键手动电平复位电路如图3.1。当时钟频率选用12MHz时,C选取22uF,R选择1000欧。复位电路如图3.2所示,单片机系统常有上电复位和操作复位两种。上电复位是指单片机上电瞬间,要在RST引脚上出现宽度大于10ms的正脉冲,才能使单片机进入复位状态。操作复位是指用户按下“复位”按钮使单片机进入复位状态。 图3.复位电路3.2.晶振电路 晶振是晶体振荡器的简称,在电气上它
16、可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分,其中较低的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。一般的晶振振荡电路都是在一个反
17、相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。一般的晶振的负载电容为15p或12.5p,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源
18、晶振是一个完整的谐振振荡器。谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。一般来说,这种机械振动的振幅是比较小的,其振动频率则是很稳定的。但当外加交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 单片机 数字 电压表 设计 论文
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内